Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.TS=2+2^2+2^3+2^4+...+2^{2017}\)
\(TS=2.TS-TS=2^{2017}-1\)
\(B=\frac{2^{2017}-1}{1-2^{2016}}=-\frac{1-2.2^{2016}}{1-2^{2016}}=-\frac{1-2^{2016}-2^{2016}}{1-2^{2016}}=-\left(1-\frac{2^{2016}}{1-2^{2016}}\right)\)
S = 1 + 2 + 22 + .... + 22017
=> 2S = 2 . ( 1 + 2 + 22 + ... + 22017 )
=> 2S = 2 + 22 + 23 + ... + 22018
=> S = ( 2 + 22 + 23 + ... + 22018 ) - ( 1 + 2 + 22 + .... + 22017 )
=> S = 22018 - 1 = 22016 . 22 - 1 = 22016 . 4 - 1
Mà 5.22016 > 22016 . 4 => 5 . 22016 > 22016 . 4 - 1
Vậy S < 5 . 22016
Bài làm :
S = 1 + 2 + 22 + .... + 22017
=> 2S = 2 . ( 1 + 2 + 22 + ... + 22017 )
=> 2S = 2 + 22 + 23 + ... + 22018
=> S = ( 2 + 22 + 23 + ... + 22018 ) - ( 1 + 2 + 22 + .... + 22017 )
=> S = 22018 - 1 = 22016 . 22 - 1 = 22016 . 4 - 1
Mà 5.22016 > 22016 . 4 => 5 . 22016 > 22016 . 4 - 1
Vậy S < 5 . 22016
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có:
2S=22+32+42+..........................+20172
-
S=12+22+32+...........................+20162
S=20172-12
Vậy S=20172-12
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.........+\frac{1}{2^{2016}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2016}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{2016}}\)
\(\Rightarrow A=1-\frac{1}{2^{2016}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)
\(\Rightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)
\(\Rightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(\Rightarrow\)\(A=1-\frac{1}{2^{2016}}\)
Suy ra 2A = 2+4+2^4+2^5+2^6+....+2^2017
2A-A= (2+4+2^4+2^5+...+2^2017)-(1+2+2^3+2^4+...+2^2016)
A= 2^2017-1
Vậy nha!
Ta có: S=1 + 2 + 22 + 23 + ... + 22016
=> 2S = 2 + 22 + 23 + ... + 22017
=> 2S - S = ( 2 + 22 + 23 + ... + 22017 ) - ( 1 + 2 + 22 + 23 + .. + 22016 )
=> S = 22017 - 1
Vậy S = 22017 - 1
S=1+2+22+23+...+22016
=> 2S = 2 (1+2+22+23+...+22016) =S=2+22+23+...+22017
=> 2S - S = (2+22+23+...+22017) - (1+2+22+23+...+22016)
S = 22017 - 1