K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2020

\(S_1=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{48\cdot49}+\frac{1}{49\cdot50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

\(S_2=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{94\cdot97}+\frac{1}{97\cdot100}\)

\(3S_2=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+....+\frac{3}{94\cdot97}+\frac{3}{97\cdot100}\)

\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{97}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)

=> \(S_2=\frac{6}{25}:3=\frac{2}{25}\)

5 tháng 5 2020

A = 1 /1.2 + 1/ 2.3 + 1 /3.4 + . . . + 1/ 49.50 + 1/ 50.51

 A = 2 − 1/ 1.2 + 3 − 2 /2.3 + 4 − 3 /3.4 + . . . + 50 − 49 /49.50 + 51 − 50/ 50.51

A = 1 − 1/ 2 + 1/ 2 − 1 /3 + 1 /3 − 1/ 4 + . . . + 1 /50 − 1 /51

A=1-1/51

A=50/51

5 tháng 5 2020

Cảm ơn bn

19 tháng 3 2024

a; \(\dfrac{-1}{n}\) - \(\dfrac{1}{n+a}\) 

\(\dfrac{-n-a-n}{n.\left(n+a\right)}\)

\(\dfrac{-2n-a}{n.\left(n+a\right)}\)

b; \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ....+ \(\dfrac{1}{2007.2008}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2007}-\dfrac{1}{2008}\)

\(\dfrac{1}{1}\) - \(\dfrac{1}{2008}\)

\(\dfrac{2007}{2008}\)

c; \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(\dfrac{1}{1}\) - \(\dfrac{1}{97}\)

\(\dfrac{96}{97}\)

1 tháng 5 2016

đặt A=1/1.2+1/2.3+1/3.4+..........1/49.50

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}<1\)

vậy A<1

1 tháng 5 2016

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50

1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50

1 - 1/50 < 1

15 tháng 6 2018

Giải:

b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2009}\)

\(=\dfrac{2008}{2009}\)

c) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{4}{7.10}+...+\dfrac{3}{94.97}\)

\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(=\dfrac{1}{1}-\dfrac{1}{97}\)

\(=\dfrac{96}{97}\)

Vậy ...

Các câu sau tương tự

16 tháng 6 2018

b, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{2008.1009}\)

\(=\)\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2008}-\dfrac{1}{2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2009}=\dfrac{2009}{2009}-\dfrac{1}{2009}=\dfrac{2008}{2009}\)

27 tháng 2 2017

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(1-\frac{1}{50}=\frac{49}{50}\)

B = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)

\(2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{37.39}\right)\)

\(2.\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\right)\)

\(\frac{2}{2}\left(\frac{1}{3}-\frac{1}{39}\right)\)

= \(\frac{4}{13}\)

C = \(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\)

= \(3\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{73.76}\right)\)

= \(3.\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\right)\)

= \(\frac{3}{3}\left(\frac{1}{4}-\frac{1}{76}\right)\) 

\(\frac{9}{38}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

20 tháng 8 2023

\(\dfrac{3}{2}A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(\dfrac{3}{2}A=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{97-94}{94.97}\)

\(\dfrac{3}{2}A=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{97}{94.97}-\dfrac{94}{94.97}\)

\(\dfrac{3}{2}A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(\dfrac{3}{2}A=1-\dfrac{1}{97}=\dfrac{96}{97}\)

⇒ A = \(\dfrac{96}{97}:\dfrac{3}{2}=\dfrac{64}{97}\)

Câu B cách làm tương tự, thắc mắc gì bạn cứ hỏi nhé.

14 tháng 7 2015

a)=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(=1-\frac{1}{2009}\)

\(=\frac{2008}{2009}\)

b) =\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

=\(\frac{96}{97}\)

14 tháng 7 2015

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2008.2009}\) \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2008}-\frac{1}{2009}\)  

= 1 - 1/2009 

= 2008/2009

b) 3/1.4 + 3/4.7 + 3/7.10 + .... + 3/94.97

= 1-  1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/94 - 1/97

= 1 - 1/97

= 96/97

26 tháng 4 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+.....+\frac{3}{94.97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

mà \(\frac{96}{97}< 1\)

\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.07}< 1\)

vậy..................

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{91\cdot94}+\frac{3}{94\cdot97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

\(\Rightarrow\frac{96}{97}< 1\)

\(\Rightarrow\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{94\cdot97}< 1\)

Vậy \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{94\cdot97}< 1\)

27 tháng 4 2016

Ta thấy: 1/1-1/4 = 3/4 = 3.(1/1.4)

           1/4-1/7 = 3/28 = 3.(1/4.7)

A = 3(1/1-1/4+1/4-1/7+...+1/97-1/100)

A = 3.(1-1/100)

A = 3.(99/100)

A = 297/100

27 tháng 4 2016

\(A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\frac{99}{100}\)

\(A=\frac{33}{100}\)