Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 1->100 có:100-1+1=100 (thừa số)
Mà \(\frac{1}{2};\frac{3}{4};\frac{5}{6};.....;\frac{99}{100}\) là những p/s có tử và mẫu là 2 số liên tiếp
=>từ \(\frac{1}{2}\rightarrow\frac{99}{100}\) có : 50 thừa số
=>M có 50 thừa số
Từ 2->101 có:101-2+1=100 (thừa số)
=>từ \(\frac{2}{3}\rightarrow\frac{100}{101}\) có: 50 thừa số
=>N có 50 thừa số
Do đó mỗi biểu thức M,N đều có 50 thừa số
Mà \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};......;\frac{99}{100}< \frac{100}{101}\)
=>\(M=\frac{1}{2}.\frac{2}{3}.......\frac{99}{100}< N=\frac{2}{3}.\frac{4}{5}.........\frac{100}{101}\)
Vậy M<N
Vì
\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow a< b\)
\(M=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)
\(\Leftrightarrow M=\frac{1}{2}.\frac{3.4...99}{4.5...100}\)
\(\Leftrightarrow M=\frac{1}{2}.\frac{3}{100}\)
\(\Leftrightarrow M=\frac{3}{200}\)
\(N=\frac{2}{3}.\frac{4}{5}.\frac{5}{6}...\frac{100}{101}\)
\(\Leftrightarrow N=\frac{2}{3}.\frac{4.5...100}{5.6...101}\)
\(\Leftrightarrow N=\frac{2}{3}.\frac{4}{101}\)
\(\Leftrightarrow N=\frac{8}{303}\)