K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,A=\(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{23.24}\)

A=\(\frac{1}{2}+\frac{2}{1}-\frac{1}{3}+\frac{3}{1}-\frac{1}{4}+......\frac{23}{1}-\frac{1}{24}\)

A=\(\frac{1}{2}-\frac{1}{24}\)

A=\(\frac{11}{24}\)

15 tháng 4 2018

Còn câu b bạn??

26 tháng 8 2016

D=\(\frac{6}{15.18}\)+\(\frac{6}{18.21}\)+...+\(\frac{6}{87.90}\)

D=2.\(\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)

D=2.\(\frac{1}{18}\)

D=\(\frac{1}{9}\)

Vậy D=\(^{\frac{1}{9}}\)

26 tháng 8 2016

\(D=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)

\(D=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)

\(D=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)

\(D=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)

\(D=2.\left(\frac{6}{90}-\frac{1}{90}\right)\)

\(D=2.\frac{1}{18}\)

\(D=\frac{1}{9}\)

21 tháng 8 2016

\(M=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+.....+\frac{6}{87.90}\)

\(\Rightarrow M=6\left(\frac{1}{15.18}+\frac{1}{18.21}+\frac{1}{21.24}+....+\frac{1}{87.90}\right)\)

\(\Rightarrow M=6\left[\frac{1}{3}\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+.....+\frac{1}{87}-\frac{1}{90}\right)\right]\)

\(\Rightarrow M=6\left[\frac{1}{3}\left(\frac{1}{15}-\frac{1}{90}\right)\right]\Rightarrow M=6\left(\frac{1}{3}.\frac{1}{18}\right)\Rightarrow M=6.\frac{1}{54}\Rightarrow M=\frac{1}{9}\)

21 tháng 8 2016

Kết quả là : \(\frac{2}{18}\)

   Ngại viết quá ! k nha!

  ^_^ 

11 tháng 9 2016

\(A=\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\)

\(A=\frac{4}{4}\left(\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\right)\)

\(A=\frac{15}{4}\left(\frac{4}{90.94}+\frac{4}{94.98}+...+\frac{4}{146.150}\right)\)

\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)

\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)

\(A=\frac{15}{4}.\frac{1}{225}=\frac{1}{60}\)

\(B=\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)

\(B=\frac{3}{3}\left(\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\right)\)

\(B=2\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)

\(B=2\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)

\(B=2\left(\frac{1}{15}-\frac{1}{90}\right)\)

\(B=2.\frac{1}{18}=\frac{1}{9}\)

15 tháng 7 2020

Trả lời:

\(A=\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\)

\(A=\frac{15}{4}.\left(\frac{4}{90.94}+\frac{4}{94.98}+...+\frac{4}{146.150}\right)\)

\(A=\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)

\(A=\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{150}\right)\)

\(A=\frac{15}{4}.\frac{1}{225}\)

\(A=\frac{1}{60}\)

\(B=\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)

\(B=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)

\(B=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)

\(B=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)

\(B=2.\frac{1}{18}\)

\(B=\frac{1}{9}\)

Giải:

a) C = \(\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)

C = \(\frac{6}{3}.\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)

C = \(\frac{6}{3}.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)

C = \(\frac{6}{3}.\left(\frac{1}{15}-\frac{1}{90}\right)\)

C = \(\frac{6}{3}.\frac{1}{18}\)

C = \(2.\frac{1}{18}\)

C = \(\frac{1}{9}\)

Vậy C = \(\frac{1}{9}\)

b) D = \(\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)

D = \(\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\right)\)\

D = \(\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)

D = \(\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)\)

D = \(\frac{1}{2}.\frac{2}{75}\)

D = \(\frac{1}{75}\)

Vậy D = \(\frac{1}{75}\)

c) E = \(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{38.41}\)

E = \(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{38}-\frac{1}{41}\)

E = \(\frac{1}{8}-\frac{1}{41}\)

E = \(\frac{33}{328}\)

Vậy E = \(\frac{33}{328}\)

21 tháng 1 2017

cam on bn nhe

25 tháng 1 2019

\(A=\frac{21}{31}+\frac{-16}{7}+\frac{44}{53}+\frac{10}{21}+\frac{9}{53} \)

\(A=\left(\frac{16}{7}+\frac{10}{21}\right)+\left(\frac{44}{53}+\frac{9}{53}\right)+\frac{21}{31}\)

\(A=\frac{58}{21}+1+\frac{21}{31}\)

\(A=\frac{100}{21}\)

\(B=6\left(\frac{1}{15.18}+\frac{1}{18.21}+...+\frac{1}{87.90}\right)\)

\(B=6\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)

\(B=6\left(\frac{1}{15}-\frac{1}{90}\right)\)

\(B=6.\frac{1}{18}\)

\(B=\frac{1}{3}\)

10 tháng 7 2015

Mình nói lí thuyết cho nghe:

 Với phân số \(\frac{a-b}{a.b}\)\(\left(VD:\frac{1}{1.2};\frac{1}{2.3};\frac{1}{2015.2016};\frac{3}{15.18};\frac{3}{18.21};\frac{1}{10.11};\frac{1}{11.12};...\right)\)thì:

 \(\frac{b-a}{a.b}=\frac{b}{a.b}-\frac{a}{a.b}=\frac{1}{a}-\frac{1}{b}\left(VD:\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2};\frac{3}{15.18}=\frac{1}{15}-\frac{1}{18}\right)\)

ÁP dụng để tính:

 c) \(\Rightarrow\frac{1}{4}C=\frac{1}{4}\left(\frac{12}{15.18}+\frac{12}{18.21}+...+\frac{12}{87.90}\right)=\frac{3}{15.18}+\frac{3}{18.21}+....+\frac{3}{87.90}\)

\(\Rightarrow\frac{1}{4}C=\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}=\frac{1}{15}-\frac{1}{90}\)

=> \(C=\left(\frac{1}{15}-\frac{1}{90}\right).4\)

10 tháng 7 2015

a,\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(A=1-\frac{1}{2016}\)suy ra \(A=\frac{2015}{2016}\)

b, \(B=5\left(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{69.70}\right)\)

\(B=5\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)

\(B=5\left(\frac{1}{10}-\frac{1}{70}\right)\)suy ra \(B=5.\frac{3}{35}\)

\(B=\frac{3}{7}\)

c,\(C=4.\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)

\(C=4.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)

\(C=4.\left(\frac{1}{15}-\frac{1}{90}\right)\)suy ra \(C=4.\frac{1}{18}\)

\(C=\frac{2}{9}\)

26 tháng 3 2016

câu 1

\(\Leftrightarrow A=\frac{4}{3}-\frac{4}{7}+\frac{4}{7}-\frac{4}{11}+...+\frac{4}{107}-\frac{4}{111}\)

\(\Rightarrow A=4\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\right)\)

\(\Rightarrow A=4.\left(\frac{1}{3}-\frac{1}{111}\right)\)

\(\Rightarrow A=4.\frac{12}{37}\)

\(\Rightarrow A=\frac{48}{37}\)

phần B làm tương tự

câu 2:

a)\(\Leftrightarrow x+\frac{7}{12}=\frac{15}{18}\)

\(\Rightarrow x=\frac{15}{18}-\frac{7}{12}\)

\(\Rightarrow x=\frac{1}{4}\)

b,c tương tự như câu 1 phần a

26 tháng 3 2016

Câu 1:

Ta có: A=1/3-1/7+1/7-1/11+....+1/107-1/111

=> A=1/3+(-1/7+1/7)+(-1/11+1/11)+....+(-1/107+1/107)+(-1)/111

=>A=1/3+(-1)/111

=>A=12/37

Ta có B= 6(1/15.18+1/18.21+...+1/87.90)

=> 3B= 6(3/15.18+3/18.21+...+3/87.90)

=> 3B= 6(1/15-1/18+1/18-1/21+....+1/87-1/90)

(Tương tự như câu A) 3B=6[1/15+(-1)/90]

=> 3B= 6.1/18=1/3

=> B= 1/3:3 = 1/9