Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)
nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)
Thay \(x=4;y=1\) vào \(P\), ta được:
\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)
\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)
\(=1-1=0\)
Vậy \(P=0\) khi \(x=4;y=1\).
Bài 1.
[ 4( x - y )5 + 2( x - y )3 - 3( x - y )2 ] : ( y - x )2 < sửa một lũy thừa rồi nhé >
= [ 4( x - y )5 + 2( x - y )3 - 3( x - y )3 ] : ( x - y )2
Đặt t = x - y
bthuc ⇔ ( 4t5 + 2t3 - 3t2 ) : t2
= 4t5 : t2 + 2t3 : t2 - 3t2 : t2
= 4t3 + 2t - 3
= 4( x - y )3 + 2( x - y ) - 3
Bài 2.
5x( x - 2 ) + 3x - 6 = 0
⇔ 5x( x - 2 ) + 3( x - 2 ) = 0
⇔ ( x - 2 )( 5x + 3 ) = 0
⇔ x - 2 = 0 hoặc 5x + 3 = 0
⇔ x = 2 hoăc x = -3/5
Bài 3.
A = x2 - 6x + 2023
= ( x2 - 6x + 9 ) + 2014
= ( x - 3 )2 + 2014 ≥ 2014 ∀ x
Dấu "=" xảy ra khi x = 3
=> MinA = 2014 <=> x = 3
Bài 4.
B = ( 3x + 5 )2 + ( 3x - 5 )2 - 2( 3x + 5 )( 3x - 5 )
= [ ( 3x + 5 ) - ( 3x - 5 ) ]2
= ( 3x + 5 - 3x + 5 )2
= 102 = 100
Vậy B không phụ thuộc vào x ( đpcm )
Bài 6.
C = 12 - 22 + 32 - 42 + 52 - 62 + ... + 20132 - 20142 + 20152
= ( 20152 - 20142 ) + ... + ( 52 - 42 ) + ( 32 - 22 ) + 1
= ( 2015 - 2014 )( 2015 + 2014 ) + ... + ( 5 - 4 )( 5 + 4 ) + ( 3 - 2 )( 3 + 2 ) + 1
= 4029 + ... + 9 + 5 + 1
= \(\frac{\left(4029+1\right)\left[\left(4029-1\right)\div4+1\right]}{2}\)
= 2 031 120
\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)
Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)
Vậy M chia hết cho 31.
\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)
Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)
Vậy N chia hết cho 8
Từ \(x^2y+y^2x=6\) suy ra \(3x^2y+3y^2x=18\) (nhân 2 vế với 3 rồi phân tích ra)
Cộng theo vế 2 giả thiết của đề bài ta có:
\(x^3+y^3+3x^2y+3y^2x=27\)
\(\Leftrightarrow\left(x+y\right)^3=27\Leftrightarrow x+y=3\)
\(\Leftrightarrow x=3-y\) thay vào x3+y3=9 ta có:
\(\Leftrightarrow\left(3-y\right)^3+y^3=9\)\(\Leftrightarrow\left(3-y+y\right)\left[\left(3-y\right)^2-y\left(3-y\right)+y^2\right]=9\)
\(\Leftrightarrow3\left[y^2-6y+9-3y+y^2+y^2\right]=9\)
\(\Leftrightarrow3\left[3y^2-9y+9\right]=9\)\(\Leftrightarrow9\left[y^2-3y+3\right]=9\)
\(\Leftrightarrow y^2-3y+3=1\)\(\Leftrightarrow y^2-3y+2=0\)
\(\Leftrightarrow y^2-2y-y+2=0\)\(\Leftrightarrow y\left(y-2\right)-\left(y-2\right)=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}y=2\Rightarrow x=3-y=3-2=1\\y=1\Rightarrow x=3-y=3-1=2\end{cases}}\)
P/s:ý kiến tính tổng x+y có vẻ hay r`, còn ý tưởng tìm x,y có vẻ hơi "choáng" thánh có thể tìm cách khác
(x+y)3 = x3 +y3 + 3x2y + 3xy2 = 9 +3.6 = 26
x+y = \(\sqrt[3]{26}\)
Có : a3 - b3 - 84
= (a - b)(a2 + ab + b2) - 84
= 6.(a2 + b2 + 9) - 84
= 6a2 + 6b2 + 54 - 84
= 6(a2 + b2) - 30
= 6 [ (a - b)2 + 2ab ] - 30
= 6 ( 62 + 2.9 ) - 30
= 324 - 30
= 294
a3 - b3 - 84
= (a - b)(a2 + ab + b2) - 84
= 6.(a2 + b2 + 9) - 84
= 6a2 + 6b2 + 54 - 84
= 6(a2 + b2) - 30
= 6 [ (a - b)2 + 2ab ] - 30
= 6 ( 62 + 2.9 ) - 30
= 324 - 30
= 294
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2023}=\dfrac{1}{a+b+c}\)
\(\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{c\left(a+b+c\right)}\right)=0\)
\(\left(a+b\right)\left[\dfrac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right]=0\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Đến đây bạn thay vào nữa là được nhé
a) 6xy^3+x^2y^6+9
= (xy^3 + 3)^2
b) x^4-2x^2y+y^2
= (x^2 - y)^2
c) x^6+25-10x^3
= (x^3 - 5)^2
a/ 6xy3+x2y6+9
= (xy3+3)2 bình phương của 1 tổng;cttq: (A+B)2
b/ x4-2x2y+y2
= (x2-y)2 bình phương của 1 hiệu; cttq (A-B)2
c/ x6+25-10x3
=(x3-5)2
a3-b3-84
=(a-b)2 ( a2+ab+b2)-84
6.(a2-2ab+b2+3ab)-84
6[(a-b)2+3ab] -84
6( 62+3.9)-84
=294
ta có : a\(^3\)- b\(^3\)- 84 = (a-b)(a\(^2\)+ ab +b\(^2\)) - 84
= 6*(9+ a\(^2\)+b\(^2\)) -84
ta lại có: (a -b)=6 <=> ( a-b)\(^2\)= 36
<=> a\(^2\)-2ab +b\(^2\)=36 <=>a\(^2\)+b\(^2\)- 18 =36 <=> a\(^2\)+ b\(^2\)= 36 +18 =54
vậy a\(^3\)- b\(^3\)- 84 =6*(9+54)-84 =294
Bạn xem lại câu A nhé dãy A toàn các số hạng chia hết cho 3 mà số cuối 2023 lại không chia hết cho 3, dãy A không tuân theo quy luật nào cả không thể tính được bạn nhé
H = 2012.3+2012.4+...+2012.2011
= 2012.(3+4+...+2011)
Xét riêng: B=3+4+...+2011
Số số hạng dãy trên:
(2011-3):1+1=2009 (số hạng)
Tổng dãy B là:
(2011+3).2009:2=2023063
Do vậy: H = 2012.2023063 = 4070402756
Mình nghĩ bạn chép sai phần A của câu hỏi rồi vì mỗi số hạng đều chia hết cho 3 nên xin phép sửa nhé!
\(A=3+6+9+...+2022\)
Số số hạng của biểu thức A là:
\(\left(2022-3\right):3+1=674\) (số)
\(\Rightarrow A=\left(2022+3\right)\cdot674:2\)
\(\Rightarrow A=682425\)
Vậy \(\Rightarrow A=682425\)
\(H=2012\cdot3+2012\cdot4+...+2012\cdot2011\)
\(\Rightarrow H=2012\cdot\left(3+4+...+2011\right)\)
Đặt \(B=3+4+...+2011\)
Số số hạng của biểu thức B là:
\(\left(2011-3\right):1+1=2009\) (số)
\(\Rightarrow B=\left(2011+3\right)\cdot2009:2\)
\(\Rightarrow B=2023063\)
Thay \(B=2023063\) vào H được:
\(H=2012\cdot2023063\)
\(\Rightarrow H=4070402756\)
Vậy \(H=4070402756\)