K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
ND
2
TD
13 tháng 12 2015
dễ ẹc cơ mà bạn
a) 16
b) -10
c) -10
d) 0
nhớ tik thích nha, chắc chắn đúng rùi đấy
BP
0
CC
0
L
0
LT
1
CH
Cô Hoàng Huyền
Admin
VIP
16 tháng 11 2016
Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)
\(=\left(S-1\right)+3^{100}\)
\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)
Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)
Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...
Tóm lại S có tận cùng là 0 hay S chia hết cho 10.
Lời giải:
** Sửa đề $\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}$
Đặt tổng trên là $A$
$A=\frac{1}{2}(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+....+\frac{1}{90})$
$=\frac{1}{2}(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+..+\frac{1}{9.10})$
$=\frac{1}{2}(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10})$
$=\frac{1}{2}(\frac{1}{2}-\frac{1}{10})=\frac{1}{5}$