Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên... Đọc tiếp
1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.
2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.
3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).
4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.
5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên đầu ) mà chia hết cho 36.
34x5y chia hết cho 36 khi 34x5y chia hết cho 4 và 9
*) 34x5y chia hết cho 4 khi 5y chia hết cho 4
khi đó y = 2 hoặc y = 6.
*) 34x5y chia hết cho 9 khi 3+4+x+5+y = 12+x+y chia hết cho 9
Với y=2 ta có 12+x+2=14+x chia hết cho 9 khi x = 4
ta có số 34452 chia hết cho 36.
Với y=6 ta có 12+x+6=18+x chia hết cho 9 khi x = 9
ta có số 34956 chia hết cho 36.
Kết luận: có hai số chia hết cho 36 là 34452 và 34956
a) gọi 3 số tự nhiên liên tieps là n ; n+1;n+2
ta có n+n+1+n+2 = nx3+3
vì 3 chia hết cho 3 ; nx3 chia hết cho 3. suy ra nx3+3 chia hết cho 3
vậy tổng của 3 số tự nhiên liên tiếp chia hết cho 3
b) gọi 4 số tự nhiên liên tiếp la n; n+1;n+2;n+3
ta có : n+n+1+n+2+n+3 = 4n+6
vì 6 ko chia hết cho 4 ; 4n chia hết cho 4 . suy ra 4n+6 không chia hết cho 4
vậy 4 số tự nhiên liên tiếp không chia hết cho 4
c) gọi 3 số tự nhiên liên tiếp là n;n+1;n+2N
nếu n chia hết cho 3 thì bài toán luôn đúng
nếu n chia3 dư 1 thì n = 3k +1 ( k thuộc N )
Suy ra n+2 = 3k+1+2
n+2 = 3k+3 chia hết cho 3
Nếu n chia 3 dư 2 thì n = 3k+2 ( k thuộc N )
Suy ra n+1 = 3k +2+1
n+1 = 3k+3 chia hết cho 3
Suy ra trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
d) gọi 2 số chẵn liên tiếp là 2k ; 2k+2
ta có :2k+2k+2 = 4k+2
vì 4k chia hết cho 4 ; 2khoong chia hết cho 4 .
Vậy tổng của 2 số chẵn liên tiếp không chia hết cho 4
Bài 2 :
a) Để 2*5* chia 5 dư 2 thì * cuối nhận các già trị là : 2;7
Nếu * cuối bằng 2 thì :2+*+5+2= 9+*
=> * = 0;9
Nếu * cuối =7 thì : 2+*+5+7 = 14+*
=> * = 5 ; 7
Vậy nếu * cuối =2 thì * đầu nhận các giá trị 0;9
Vậy nếu * cuối = 7thì * đầu nhận các giá trị 5;7
b)
Để 4*5* có hàng đơn vị gấp 3 lần hàng trăm thì ta có các số là : 4153 ; 4256 ; 4359
+) 4153 = 4+1+5+3 =13 không chia hết cho 9 ( loại)
+) 4256 = 4+2+5+6 = 17 không chia hết cho 9 ( loại )
+) 4359 = 4+3+5+9 =21 chia hết cho 9 ( thỏa mãn )
vậy số cần tìm la 4359
Bài 3 :
-) Với 5 điểm mà có 3 điểm thẳng hàng thì ta vẽ được : 9 đường thẳng
-) với n điểm ta có :
nx(n-1):2
Bài 2:
a. Gọi 3 số tự nhiên liên tiếp là: n, n+1, n+2
Theo bài cho, ta có: n + (n+1) + (n+2) = 3n + 3
Vì 3 chia hết cho 3 => 3n chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b. Chứng minh tương tự câu a
c. Gọi 3 số tự nhiên liên tiếp là: n, n+1, n+2 (n thuộc N)
Xét 3 trường hợp:
TH1: n chia cho 3 dư 0
=> n chia hết cho 3
TH2: n chia cho 3 dư 1
Có: n = 3q+1
n + 2 = 3q+1+2
n+2 = 3q + 3
n+2 = 3q + 3.1
n+2 = 3.(q+1)
=> n+2 chia hết cho 3
TH3: n chia cho 3 dư 2
Có: n = 3q+2
n + 1 = 3q+2+1
n+ 1 = 3q + 3
n+1 = 3q + 3.1
n+1 = 3.(q+1)
=> n+1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
a; Tổng của ba số tự nhiên liên tiếp có dạng:
n; n + 1; n + 2
Tổng của ba số tự nhiên liên tiếp có là:
n + n + 1 + n +2 = 3n + 3 = 3.(n+ 1) ⋮ 3(đpcm)