K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
8 tháng 1 2021

câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)

câu .2 

a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có

\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)

b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có

\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)

c. ta có \(a+b=a-3+b-4+7\)

ta có a-3 và b-4 chia hết cho 5  còn 7 chia 5 dư 2

vậy a+b chia 5 dư 2..

26 tháng 2 2022
Dbrrjkdndd
12 tháng 7 2023

 

1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên... Đọc tiếp

1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.

2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.

3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).

4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.

5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên đầu ) mà chia hết cho 36.

12 tháng 7 2023

34x5y chia hết cho 36 khi 34x5y chia hết cho 4 và 9 
*) 34x5y chia hết cho 4 khi 5y chia hết cho 4 
khi đó y = 2 hoặc y = 6. 
*) 34x5y chia hết cho 9 khi 3+4+x+5+y = 12+x+y chia hết cho 9 
Với y=2 ta có 12+x+2=14+x chia hết cho 9 khi x = 4 
ta có số 34452 chia hết cho 36. 
Với y=6 ta có 12+x+6=18+x chia hết cho 9 khi x = 9 
ta có số 34956 chia hết cho 36. 
Kết luận: có hai số chia hết cho 36 là 34452 và 34956

2 tháng 10 2017

a) gọi 3 số tự nhiên liên tieps là n ; n+1;n+2

ta có n+n+1+n+2 = nx3+3

vì 3 chia hết cho 3 ; nx3 chia hết cho 3. suy ra nx3+3 chia hết cho 3

vậy tổng của 3 số tự nhiên liên tiếp chia hết cho 3

b) gọi 4 số tự nhiên liên tiếp la n; n+1;n+2;n+3

ta có : n+n+1+n+2+n+3 = 4n+6 

vì 6 ko chia hết cho 4 ; 4n chia hết cho 4 . suy ra 4n+6  không chia hết cho 4

vậy 4 số tự nhiên liên tiếp không chia hết cho 4

c) gọi 3 số tự nhiên liên tiếp là n;n+1;n+2N

nếu n chia hết cho 3 thì bài toán luôn đúng 

nếu n chia3 dư 1 thì n = 3k +1 ( k thuộc N )

Suy ra n+2 = 3k+1+2 

           n+2 = 3k+3 chia hết cho 3

Nếu n chia 3 dư 2 thì n = 3k+2 ( k thuộc N )

Suy ra n+1 = 3k +2+1

           n+1 = 3k+3 chia hết  cho 3

Suy ra trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3

d) gọi 2 số chẵn liên tiếp là 2k ; 2k+2

ta có :2k+2k+2 = 4k+2

vì 4k chia hết cho 4 ; 2khoong chia hết cho 4 .

Vậy tổng của 2 số chẵn liên tiếp  không chia hết cho 4

Bài 2 :

a) Để 2*5* chia 5 dư 2 thì * cuối nhận các già trị là : 2;7

Nếu * cuối bằng 2 thì :2+*+5+2= 9+*

=> * = 0;9

Nếu * cuối =7 thì : 2+*+5+7 = 14+*

=> * = 5 ; 7

Vậy nếu * cuối =2 thì * đầu nhận các giá trị 0;9

Vậy nếu * cuối = 7thì * đầu nhận các giá trị 5;7

b)

Để 4*5* có hàng đơn vị gấp 3 lần hàng trăm thì ta có các số là : 4153 ; 4256 ; 4359 

+) 4153 = 4+1+5+3 =13 không chia hết cho 9 ( loại)

+) 4256 = 4+2+5+6 = 17 không chia hết cho 9 ( loại )

+) 4359 = 4+3+5+9 =21 chia hết cho 9 ( thỏa mãn )

vậy số cần tìm la 4359

Bài 3 :

-) Với 5 điểm mà có 3 điểm thẳng hàng thì ta vẽ được : 9 đường thẳng 

-) với n điểm ta có :

         nx(n-1):2

3 tháng 10 2017

Bài 2: 

a. Gọi 3 số tự nhiên liên tiếp là: n, n+1, n+2

Theo bài cho, ta có: n + (n+1) + (n+2) = 3n + 3

Vì 3 chia hết cho 3 => 3n chia hết cho 3

Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3

b. Chứng minh tương tự câu a

c. Gọi 3 số tự nhiên liên tiếp là: n, n+1, n+2 (n thuộc N)

Xét 3 trường hợp:

TH1: n chia cho 3 dư 0 

=> n chia hết cho 3

TH2: n chia cho 3 dư 1 

Có: n = 3q+1

n + 2 = 3q+1+2

n+2 = 3q + 3

n+2 = 3q + 3.1 

n+2 = 3.(q+1)

=> n+2 chia hết cho 3 

TH3: n chia cho 3 dư 2

Có: n = 3q+2

n + 1 = 3q+2+1

n+ 1 = 3q + 3

n+1 = 3q + 3.1

n+1 = 3.(q+1)

=> n+1 chia hết cho 3 

Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3