Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
b)Ta có : (x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) = 7450
<=> ( x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 7450
<=> 100 .x + 5050 = 7450
<=> 100.x = 7450 - 5050
<=> 100. x = 2400
<=> x = 2400 : 100
<=> x = 24
Vậy x = 24
c) Có số số hạng là :
( x - 1 ) + 1 ( số hạng )
Tổng của dãy số là :
(x + 1 ) . x : 2 = 78
=> ( x + 1 ) . x = 156
=> (x + 1 ) . x =13 . 12 = 156
=> x = 12
Vậy x = 12
d) 12.x + 13.x = 2000
<=> x . ( 12 + 13 ) = 2000
<=> x . 25 = 2000
<=> x =2000 : 25
<=> x = 80
Vậy x = 80
e) 6.x + 4.x = 2010
<=> x . ( 6 + 4 ) = 2010
<=> x . 10 =2010
<=> x = 2010 : 10
<=> x = 201
Vậy x = 201
f) 5.x - 3.x - x = 20
<=> x . ( 5 - 3 - 1 ) = 20
<=> x . 1 = 20
<=> x = 20
Vậy x = 20
Còn câu a thì đợi mình tí ,lười nghĩ
a) 2 + 6 + 10 + 14 +...+202
= 2.1 + 2.3 + 2.5 + 2.7 +...+2.101
=2.(1+3+5+7+...+101)
=2.[(1+101).51:2]
=2.2601
=5202
b) Đặt A=1+2+22+23+...+265
=> 2A=2+22+23+24+...+266
=>2A-A=266-1
A=266-1
+) Số số hạng của dãy là : \(\left(202-2\right):4+1=51\) (số)
Tổng của dãy là : \(\frac{\left(202+2\right)\times51}{2}=5202\)
+) Đặt \(A=1+2+2^2+2^3+...+2^{65}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{66}\)
\(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{66}\right)-\left(1+2+2^2+2^3+...+2^{65}\right)\)
\(\Rightarrow A=2^{66}-1\)
+) Đặt \(B=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow5B=5^2+5^3+5^4+...+5^{101}\)
\(\Rightarrow5B-B=4B=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
\(\Rightarrow4B=5^{101}-5\)
\(\Rightarrow B=\frac{5^{101}-5}{4}\)
_Chúc bạn học tốt_
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)
\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4.4...100.101}\)
\(=\frac{\left(1.2.3...100\right)\left(1.2.3...100\right)}{\left(1.2.3..100\right)\left(2.3.4...101\right)}=\frac{1}{101}\)
bài 1 :
\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1
\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1
\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2
chúc bạn học tốt !!!
Đáp án cần chọn là: D