Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
\(\Delta=\left(4m+3\right)^2-4.2.\left(2m^2-1\right)\)
\(=16m^2+24m+9-16m^2+8\)
\(=24m+17\)
Để phương trình có nghiệm thì :
\(24m+17\ge0\)
\(\Leftrightarrow24m\ge-17\)
\(\Leftrightarrow m\ge-\dfrac{17}{24}\)
Câu 2 :
\(\Delta=3^2-4.2.n\)
\(=9-8n\)
Để phương trình có nghiệm thì :
\(9-8n\ge0\)
\(\Leftrightarrow-8n\ge-9\)
\(\Leftrightarrow n\le\dfrac{9}{8}\)
Bài 1: Tìm m mới đúng nhé!
\(2x^2+\left(2m-1\right)x+m-1=0\\ \Delta=b^2-4ac=\left(2m-1\right)^2-4.2.\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\forall m\)
Theo hệ thức Vi - ét: \(\left\{ \begin{array}{l} {x_1} + {x_2} = \dfrac{{ - b}}{a} = \dfrac{{ - \left( {2m - 1} \right)}}{2} = \dfrac{{ - 2m + 1}}{2}\\ {x_1}{x_2} = \dfrac{c}{a} = \dfrac{{m - 1}}{2} \end{array} \right. \)
Theo đề bài ta có:
\( 4x_{_1}^2 + 4x_2^2 + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left( {x_1^2 + x_2^2} \right) + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] + 2{x_1}{x_2} = 1\\ \Leftrightarrow 4\left[ {{{\left( {\dfrac{{ - 2m + 1}}{2}} \right)}^2} - 2\left( {\dfrac{{m - 1}}{2}} \right)} \right] + 2\left( {\dfrac{{m - 1}}{2}} \right) = 1\\ \Leftrightarrow 4{m^2} - 7m + 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l} m = 1\\ m = \dfrac{3}{4} \end{array} \right. \)
Vậy ...
Bài 2:
\(a)x^2+\left(m+2\right)x+m-1=0\\ \Delta=b^2-4ac=\left(m+2\right)^2-4.1.\left(m-1\right)=m^2+8\ge0\forall m\)
b) Theo hệ thức Vi - ét: \(\left\{ \begin{array}{l} {x_1} + {x_2} = \dfrac{{ - b}}{a} = - \left( {m + 2} \right) \\ {x_1}{x_2} = \dfrac{c}{a} = m - 1 \end{array} \right. \)
Theo đề bài ta có:
\( A = x_1^2 + x_2^2 - 3{x_1}{x_2}\\ A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - 3{x_1}{x_2}\\ A = {\left[ { - \left( {m + 2} \right)} \right]^2} - 5\left( {m - 1} \right)\\ A = {m^2} + 4m + 4 - 5m + 5\\ A = {m^2} - m + 9\\ A = \left( {{m^2} - 2.m.\dfrac{1}{2} + \dfrac{1}{4}} \right) - \dfrac{1}{4} + 9\\ A = {\left( {m - \dfrac{1}{2}} \right)^2} + \dfrac{{35}}{4} \ge \dfrac{{35}}{4} \)
Vậy \({A_{\min }} = \dfrac{{35}}{4} \Leftrightarrow m - \dfrac{1}{2} = 0 \Leftrightarrow m = \dfrac{1}{2} \)
\(\Delta=\left(2-m\right)^2-12\left(m+1\right)=m^2-16m-8\)
Để phương trình có nghiệm kép
\(\Leftrightarrow\Delta=0\Leftrightarrow m^2-16m-8=0\) (1)
Do \(ac=-8< 0\) nên (1) luôn có 2 nghiệm
Theo Viet ta có: \(P=m_1m_2=-8\)
\(\Leftrightarrow\left(x^2-3x+3\right)^2-5\left(x^2-3x+3\right)+4=0\)
Đặt \(x^2-3x+3=t\)
\(\Rightarrow t^2-5t+4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-3x+3=1\\x^2-3x+3=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\x^2-3x-1=0\end{matrix}\right.\)
Theo Viet, tổng các nghiệm: \(x_1+x_2+x_3+x_4=3+3=6\)