Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có S = ( 1/2 - 1) : ( 1/3 - 1) : (1/4 - 1) :... : ( 1/50 - 1)
S = -1/2 : ( -2/3) : ( -3/4) : ... : ( -49/ 50)
S= -1/2 x (-3/2) x ( -4/3) x ... x (-50/49)
S= -1/2 x 1/3 x 50
S= -25/3
A=33. \(\left(1-\frac{2}{3}\right)\left(1-\frac{2}{5}\right)...\left(1-\frac{2}{99}\right)\)
A=33.\(\frac{1}{3}.\frac{3}{5}....\frac{97}{99}\)
A=33.\(\frac{1}{99}\)
A=\(\frac{33}{99}=\frac{1}{3}\)
b, S = 2 + 22 + 23 + ...+29.
2S = 2(2 + 22 + 23 + ... + 29).
= 22 + 23 + 24 + ... + 210.
2S - S = (22 + 23 + 24 + ... + 210) - (2 + 22 + 23 + ... + 29).
S = 210 - 2.
Vậy S = 210 - 2.
~Chúc bn học tốt!!!~
a, \(\dfrac{-1}{5}.\dfrac{6}{7}+\dfrac{3}{7}.\dfrac{3}{5}+\dfrac{2^5.27}{3^3.64}.\)
\(=\dfrac{-1}{5}.\dfrac{3}{7}.2+\dfrac{3}{7}.\dfrac{3}{5}+\dfrac{32.27}{27.64}.\)
\(=\dfrac{3}{7}\left(\dfrac{-1}{5}.2+\dfrac{3}{5}\right)+\dfrac{2.1}{1.2}.\)
\(=\dfrac{3}{7}.\dfrac{1}{5}+1.\)
\(=\dfrac{3}{35}+1.\)
\(=\dfrac{3}{35}+\dfrac{35}{35}.\)
\(=\dfrac{38}{35}.\)
~Chúc bn học tốt!!!~
Bài 2:
a: =>x/7=1/21
=>x=1/3
c: =>x(3x-2)=0
=>x=0 hoặc x=2/3
Bài1:
a: \(=\left(-\dfrac{7}{3}\right)^{3-2}=\dfrac{-7}{3}\)
b: \(=\left(-\dfrac{4}{9}\right)^{1-3}=\left(-\dfrac{4}{9}\right)^{-2}=\dfrac{81}{16}\)
c: \(=\left(\dfrac{1}{5}\right)^{10-7}=\left(\dfrac{1}{5}\right)^3=\dfrac{1}{125}\)
1.
a) (—7/3)3:(—7/3)2=(—7/3)3–2=—7/3
b) (—4/9):(—4/9)3= (—4/9)1–3=(—4/9)—2=81/16
c) (1/5)10:(1/5)7=(1/5)10–7=(1/5)3=1/125
2.
a) —x/7 =1/—21
==> —x.(—21)=7.1
==> —x.(—21)=7
==> —x=7:(—21)
==> —x=—1/3
==> x=1/3
b) 4 2/5 . 0,5–1 3/7= 22/5 . 1/2 —10/7= 22.1/5.2–10/7= 11/5 —10/7= 77/35 — 50/35= 27/35
c) 3x2–2x=0
==> x3(3–2)=0
x3.1=0
x3=0:1
x3=0
==> x=0
c) 9x2–1=0
9x2=0+1
9x2=1
x2=1:9
x2=1/9
x2=12/32 hoặc x2=(—1/3)2
Vậy x=1/3 hoặc x=—1/3
\(G=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..............+\frac{1}{3^{100}}\)
\(3G=1+\frac{1}{3}+\frac{1}{3^2}+...............+\frac{1}{3^{99}}\)
\(3G-G=\left(1+\frac{1}{3}+\frac{1}{3^2}+..........+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...............+\frac{1}{3^{100}}\right)\)
\(2G=1-\frac{1}{3^{100}}\)
\(\Rightarrow G=\left(1-\frac{1}{3^{100}}\right):2\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)+\left(1+\frac{1}{2}+...+\frac{1}{2^{10}}\right)\)
\(2S-S=S=2-\frac{1}{2^{10}}\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2S=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(2S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(S=2S-S\)
\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
\(S=2-\frac{1}{2^{10}}\)