Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) \(A=1+3+3^2+3^3+...+3^{100}\)
\(\Rightarrow 3A=3+3^2+3^3+...+3^{101}\)
Trừ theo vế:
\(\Rightarrow 3A-A=(3+3^2+3^3+..+3^{101})-(1+3+3^2+...+3^{100})\)
\(2A=3^{101}-1\Rightarrow A=\frac{3^{101}-1}{2}\)
b) \(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(\Rightarrow 2B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
Cộng theo vế:
\(\Rightarrow B+2B=2^{201}-2\)
\(\Rightarrow B=\frac{2^{101}-2}{3}\)
c) Ta có:
\(C=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
\(\Rightarrow 3C=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
Cộng theo vế:
\(C+3C=(3^{100}-3^{99}+3^{98}-....+3^2-3+1)+(3^{101}-3^{100}+3^{99}-....+3^3-3^2+3)\)
\(4C=3^{101}+1\Rightarrow C=\frac{3^{101}+1}{4}\)
a: \(3A=3+3^2+...+3^{101}\)
\(\Leftrightarrow2A=3^{101}-1\)
hay \(A=\dfrac{3^{101}-1}{2}\)
b: \(2B=2^{101}-2^{100}+...+2^3-2^2\)
\(\Leftrightarrow3B=2^{101}-2\)
hay \(B=\dfrac{2^{101}-2}{3}\)
c: \(3C=3^{101}-3^{100}+....+3^3-3^2+3\)
=>\(4C=3^{101}+1\)
hay \(C=\dfrac{3^{101}+1}{4}\)
<=>\(\frac{1}{2}D=\frac{1}{2^{101}}-\frac{1}{2^{100}}+\frac{1}{2^{99}}-...+\frac{1}{2^3}\)\(-\frac{1}{2^2}\)
<=>\(D+\frac{1}{2}D=\frac{1}{2^{101}}-\frac{1}{2}\)
<=> \(\frac{3}{2}D=\frac{2-2^{101}}{2^{102}}\)
<=>\(D=\frac{2\left(1-2^{100}\right)}{2^{102}}.\frac{2}{3}\)
<=>\(D=\frac{1-2^{100}}{2^{100}.3}\)
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow A+2A=2^{101}-2\)
\(A\left(1+2\right)=2^{101}-2\)
\(A.3=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3\)
\(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2\)
\(\Rightarrow B+3B=3^{101}-3\)
\(B\left(1+3\right)=3^{101}-3\)
\(4B=3^{101}-3\)
\(B=\frac{3^{101}-3}{4}\)
A = 2100 - 299 + 298 - 297 + ... + 22 - 2
= ( 2100 + 298 + ... + 22 ) - ( 299 + 297 + ... + 2 )
= ( 2100 + 298 + ... + 22 ) - 2( 299 + 297 + ... + 2 ) + ( 299 + 297 + ... + 2 )
= 299 + 297 + ... + 2
=> 4A = 2103 + 299 + ... + 23
=> 3A = 2103 - 2
=> A = \(\frac{2^{103}-2}{3}\)
E=12+22+32+42+...+982+992+1002
=1+2(1+1)+3(1+2)+4(1+3)+....+98(1+97)+99(1+98)+100(1+99)
=1+1.2+2+3+2.3+4+3.4+....+98+97.98+99+98.99+100+99.100
=(1+2+3+4+...+100)+(1.2+2.3+3.4+...+99.100)
Đặt A=1+2+3+...+100=\(\frac{\left(100+1\right).100}{2}=5050\)
Đặt B=1.2+2.3+3.4+...+99.100
3B=1.2.3+2.3.3+....+99.100.3
3B=1.2.3+2.3.(4-1)+...+99.100.(101-98)
3B=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100
3B=99.100.101
=>B=\(\frac{99.100.101}{3}=333300\)
Vậy E=A+B=5050+333300=338350
Ta có :
1002 - 992 = ( 100 - 99 ) ( 100 + 99 ) =1 ( 100 + 99 ) = 99 + 100
982 - 972 = ( 98 - 97 ) ( 98 + 97 ) = 1.( 98 + 97 ) = 97 + 98
..........
22 - 12 = ( 2 - 1 ) ( 2 + 1 ) = 1 ( 2 + 1 ) = 1 + 2
=> 1002 - 992 + 982 - 97 2 + ..... + 22 - 12 = 1 + 2 + 3 + ..... + 99 + 100 = 100.101/2 = 5050
Xem lại đề -....+ quy luật thay đổi ? thay đổi từ chỗ nào