K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

637/3825

25 tháng 4 2016

0 nhớ chắc chắn nhưng xem có bài nào giạng đấy 0 và giải hộ

16 tháng 8 2016

đề câu a sai ở tử của số hạng thứ 2

16 tháng 8 2016

câu a phải là như z ms làm được bn ơi

A = 31.3+33.5+...+319.2031.3+13.5+...+319.20

 

16 tháng 8 2016

\(B=\frac{3}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\right)\)

\(=\frac{3}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{49.50}-\frac{1}{50.51}\right)\)

\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2550}\right)\)

\(=\frac{3}{2}\cdot\frac{637}{1275}\)

\(=\frac{637}{850}\)

16 tháng 8 2016

mk trả lời câu này rồi đó

18 tháng 6 2015

\(Z=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{49.50}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{2}\left(\frac{2450}{2450}-\frac{1}{2450}\right)\)

\(=\frac{1}{2}.\frac{2449}{2450}=\frac{2449}{4900}\)

31 tháng 3 2017

Z = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100 
Áp dụng phương pháp khử liên tiếp: viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau. 
Ta xét: 
1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100 
tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2). Do đó: 
2Z = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100 
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100) 
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100 
= 1/1.2 - 1/99.100 
= 1/2 - 1/9900 
= 4950/9900 - 1/9900 
= 4949/9900. 
Vậy Z = \(\frac{4949}{9900}\)

24 tháng 6 2016

Ta có nhận xét:

\(\frac{2}{n.\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

Áp dụng công thức trên vào bài tập, ta có:

B=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{1482}\right)\)

\(\Rightarrow B=\frac{1}{2}.\frac{370}{741}=\frac{185}{741}\)

Vậy \(B=\frac{185}{741}\)

10 tháng 6 2016

Ta có nhận xét:

\(\frac{2}{n.\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

Áp dụng công thức trên vào bài tập, ta có:

\(\Rightarrow B=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{1482}\right)\)

\(\Rightarrow B=\frac{1}{2}.\frac{370}{741}=\frac{185}{741}\)

10 tháng 6 2016

 \(\Rightarrow B=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+\frac{5}{3.4.5}-\frac{3}{3.4.5}+...+\frac{39}{37.38.39}-\frac{37}{37.38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{38.29}\right)\)

\(\Rightarrow B=\frac{1}{2}.\frac{370}{741}=\frac{185}{741}\)

 

14 tháng 6 2016

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}...+\frac{2}{37.38.39}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)=\frac{185}{741}\)

14 tháng 6 2016

3765942

29 tháng 5 2015

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\right)=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{1482}\right)=\frac{1}{2}.\frac{370}{741}=\frac{185}{741}\)

29 tháng 5 2015

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}=\frac{1}{2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(=\left(\frac{1}{2}-\frac{1}{38\cdot39}\right)+\left(\frac{1}{2\cdot3}-\frac{1}{2\cdot3}\right)+...+\left(\frac{1}{37\cdot38}-\frac{1}{37\cdot38}\right)=\left(\frac{741}{1482}-\frac{1}{1482}\right)+0+...+0=\frac{740}{1482}=\frac{370}{741}\)Chúc bạn học tốt!^_^