\(H=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

\(=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{32}\right)+\left(\frac{1}{33}+...+\frac{1}{64}\right)\)

\(=1+\frac{1}{2}+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32\)

\(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(=1+\frac{1}{2}.6\)

\(=1+3\)

\(=4\)

~~ Bố thí cái li.ke ~~

27 tháng 12 2017

Ta có : 

A= 1+ 1/2 + 1/3 +1/4 + ...+ 1/63 + 1/64 

   =1 + ( 1/2 + 1/3 + 1/4 ) + ( 1/5 +1/6 + ..+1/8 ) + ( 1/9 + 1/10 + ..+ 1/16 ) + ( 1/17  + 1/18 + ...+ 1/32 ) + ( 1/33 + 1/34 + ...+1/63 + 1/64 ) 

=> A > 1 + ( 1/2 + 1/4.2 ) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32 

     A > 1 + 1/2 + 1/2 + 1/2 +1/2 

  =>A > 4

27 tháng 12 2017

thanks

1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4*1/8=1/2
1/9+…+1/16>8*1/16=1/2
1/2+1/3+1/4+…+1/16>4*1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
=>  1/2+1/3+…+1/63>2

t i c k nhé !! 5756876876978080

12 tháng 6 2016

Ta có:

\(\frac{1}{2}=\frac{1}{2}\)

\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

\(\frac{1}{5}+...+\frac{1}{8}>4.\frac{1}{8}=\frac{1}{2}\)

\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)

\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}>4.\frac{1}{2}=2\)

\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)

10 tháng 8 2019

\(1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)

\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)(1)

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)

\(\Rightarrow2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(\Rightarrow A=1-\frac{1}{2^{10}}\)

Thay A vào (1)

\(\Rightarrow1-\left(1-\frac{1}{2^{10}}\right)\)

\(=1-1+\frac{1}{2^{10}}=\frac{1}{2^{10}}\)

Ta có: 210 < 211

\(\Rightarrow\frac{1}{2^{10}}>\frac{1}{2^{11}}\)(đpcm)

22 tháng 10 2016

Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\)

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\left(1\right)\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}< 1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\)

Đpcm