K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

A = (1-2).(1+2)+(3-4).(3+4)+(5-6).(5+6)+.....+(99-100).(99+100)

   = -1.3-1.7-1.11-......-1.199

   = -(3+7+11+....+99)

Trong dãy số 3;7;11;.....;99 có số số là : (99-3) : 4 + 1 = 25 (số)

=> A = -(3+99).25:2 = -1275

Tk mk nha

\(A=1^2-2^2+3^2-4^2+5^2-6^2+...+99^2-100^2\)

\(A=-3+\left(-7\right)+\left(-11\right)+...+\left(-199\right)\)

\(A=\frac{\left(-3+\left(-7\right)\right).50}{2}\)

\(A=-\frac{10.50}{2}\)

\(A=-250\)

22 tháng 7 2016

a)

\(5A=5+5^2+.....+5^{101}\)

\(\Rightarrow5A-A=\left(5+5^2+.....+5^{101}\right)-\left(1+5+.....+5^{100}\right)\)

\(\Rightarrow4A=5^{101}-1\)

\(\Rightarrow A=\frac{5^{101}-1}{4}\)

b)

\(2B=1+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{100}\)

\(\Rightarrow2B-B=\left(1+\frac{1}{2^2}+.....+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{99}}\right)\)

\(\Rightarrow B=1-\frac{1}{2^{100}}\)

 

6 tháng 9 2019

\(A=1+3+3^2+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

\(\Rightarrow3A-A=3^{101}-1\)

\(\Rightarrow A=\frac{3^{101}-1}{2}\)

3 tháng 9 2015

3/4.8/9.15/16......9999/10000
= 3.8.15.....9999/4.9.16......10000
=101/50

14 tháng 10 2024

a; \(\dfrac{5}{6}\) + \(\dfrac{5}{12}\) + \(\dfrac{5}{20}\) + ... + \(\dfrac{5}{132}\)

 = 5.(\(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + ..+ \(\dfrac{1}{132}\))

= 5.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ... + \(\dfrac{1}{11.12}\))

= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ...+ \(\dfrac{1}{11}\) - \(\dfrac{1}{12}\))

= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{12}\))

= 5.(\(\dfrac{6}{12}\) - \(\dfrac{1}{12}\))

= 5.\(\dfrac{5}{12}\)

\(\dfrac{25}{12}\)

A=-1++(-1)+..+-(1) có 50 số -1

=>A=-1x50=-50

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+0+..+0

B=0

C=2^100-(2^99+2^98+...+1)

C=2^100-(2^100-1)

C=1

15 tháng 7 2019

\(a,A=1^2+3^2+5^2+...+99^2\)

\(A=1+2^2+3^2+4^2+5^2+...+99^2\)

\(A=1+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(A=\left(2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

\(A=\frac{99.100.101}{3}-\frac{99.\left(99+1\right)}{2}\)

\(A=333300-4950=328350\)