K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

Đặt \(B=\frac{2}{5\cdot9}+\frac{2}{9\cdot13}+\frac{2}{13\cdot17}+....+\frac{2}{97\cdot101}\)

\(\Rightarrow2B=\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+....+\frac{4}{97\cdot101}\)

\(\Leftrightarrow2B=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+....+\frac{1}{97}-\frac{1}{101}\)

\(\Leftrightarrow2B=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}\)

\(\Leftrightarrow B=\frac{96}{505}:2\)

21 tháng 4 2020

Chứng minh \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)

\(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)

\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)

\(A=\frac{1}{1}-\frac{1}{21}\)

\(A=\frac{20}{21}\)

\(\frac{20}{21}< 1\)

=> \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)( đpcm ) 

* Mình sợ sai xD *

8 tháng 10 2021

số các số hạng là : 8192 - 1 + 1 = 8192

số các số cặp là : 8192 : 2 = 4096

giá trị mỗi cặp là : 1 + 8192 = 8193

C = 8193 x 4096 = 33558528

18 tháng 3 2019

\(A=\frac{2}{5\cdot9}+\frac{2}{9\cdot13}+...+\frac{2}{55\cdot59}\)

\(A=2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{55}-\frac{1}{59}\right)\)

\(A=2\left(\frac{1}{5}-\frac{1}{59}\right)\)

\(A=2\left(\frac{59}{295}-\frac{5}{295}\right)\)

\(A=2\cdot\frac{54}{295}\)

\(A=\frac{536}{295}\)

11 tháng 4 2017

\(4S=4.\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\right)\)

=\(\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{21.25}_{ }\)

=\(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{21}-\frac{1}{23}\)

=\(\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)

=> \(S=\frac{4}{25}:4=\frac{4}{25}.\frac{1}{4}=\frac{1}{25}\)

11 tháng 4 2017

\(S=\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{21\times25}\)

\(S\times4=\frac{4}{5\times9}=\frac{4}{9\times13}+...+\frac{4}{21\times25}\)

\(S\times4=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}\)

\(S\times4=\frac{1}{5}-\frac{1}{25}\)

\(S\times4=\frac{4}{25}\)

\(S=\frac{1}{25}\)