Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
Ta có : 2016/2017<1
2017/2018<1
Nên 2016/2017=2017/2018
Bài 1 :
a) Ta có : \(\frac{2016}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=1-\frac{1}{2018}\)
Vì \(-\frac{1}{2017}< -\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\)
b) Ta có : \(\frac{2018}{2017}=1+\frac{1}{2017}\)
\(\frac{2017}{2016}=1+\frac{1}{2016}\)
Vì \(\frac{1}{2017}< \frac{1}{2016}\) nên \(\frac{2018}{2017}< \frac{2017}{2016}\)
Câu 2 :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\frac{102}{103}=\frac{51}{103}\)
\(a,\frac{5\cdot84\cdot105}{35\cdot50\cdot21}=\frac{1\cdot4\cdot3}{1\cdot10\cdot1}=\frac{1\cdot2\cdot3}{1\cdot5\cdot1}=\frac{6}{5}\)
\(b,\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{8}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{7}{8}\)
\(=\frac{1}{8}\)
a)
\(\frac{5\cdot84\cdot105}{35\cdot50\cdot21}\)
\(=\frac{5\cdot7\cdot2\cdot6\cdot35\cdot3}{35\cdot5\cdot10\cdot3\cdot7}\)
\(=\frac{6}{5}\)
\(\frac{3}{7}+\frac{4}{5}+\frac{4}{7}=\left(\frac{3}{7}+\frac{4}{7}\right)+\frac{4}{5}=1+\frac{4}{5}=\frac{9}{5}\)
\(\frac{6}{11}+\frac{1}{3}+\frac{5}{11}=\left(\frac{6}{11}+\frac{5}{11}\right)+\frac{1}{3}=1+\frac{1}{3}=\frac{4}{3}\)
a) \(\frac{3}{7}+\frac{4}{5}+\frac{4}{7}\)
= \(\left(\frac{3}{7}+\frac{4}{7}\right)+\frac{4}{5}\)
= \(1+\frac{4}{5}\)
= \(\frac{9}{5}\)
b) \(\frac{6}{11}+\frac{1}{3}+\frac{5}{11}\)
= \(\left(\frac{6}{11}+\frac{5}{11}\right)+\frac{1}{3}\)
= \(1+\frac{1}{3}\)
= \(\frac{4}{3}\)
\(a.\frac{3}{7}.\frac{5}{6}+\frac{5}{6}.\frac{4}{7}=\left(\frac{3}{7}+\frac{4}{7}\right).\frac{5}{6}=1.\frac{5}{6}=\frac{5}{6}\)
\(b.\frac{1}{6}:\frac{4}{5}+\frac{1}{8}:\frac{4}{5}=\left(\frac{1}{6}+\frac{1}{8}\right):\frac{4}{5}=\left(\frac{4}{24}+\frac{3}{24}\right):\frac{4}{5}=\frac{7}{24}:\frac{4}{5}=\frac{7.5}{24.4}\)\(=\frac{35}{96}\)
\(c.\frac{1}{6}:\frac{4}{5}-\frac{1}{8}:\frac{4}{5}=\left(\frac{1}{6}-\frac{1}{8}\right):\frac{4}{5}=\left(\frac{4}{24}-\frac{3}{24}\right):\frac{4}{5}\)\(=\frac{1}{24}:\frac{4}{5}=\frac{1.5}{24.4}=\frac{5}{96}\)
a) \(\frac{3}{7}\cdot\frac{5}{6}+\frac{5}{6}\cdot\frac{4}{7}\)
\(=\left(\frac{3}{7}+\frac{4}{7}\right)\cdot\frac{5}{6}\)
\(=1\cdot\frac{5}{6}\)
\(=\frac{5}{6}\)
b) \(\frac{1}{6}:\frac{4}{5}+\frac{1}{8}:\frac{4}{5}\)
\(=\left(\frac{1}{6}+\frac{1}{8}\right):\frac{4}{5}\)
\(=\frac{7}{24}:\frac{4}{5}\)
\(=\frac{35}{96}\)
c) \(\frac{1}{6}:\frac{4}{5}-\frac{1}{8}:\frac{4}{5}\)
\(=\left(\frac{1}{6}-\frac{1}{8}\right):\frac{4}{5}\)
\(=\frac{1}{24}:\frac{4}{5}\)
\(=\frac{5}{96}\)
1 \(A=\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times.........\times\left(1+\frac{1}{2016}\right)\times\left(1+\frac{1}{2017}\right)\)
\(A=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times......\times\frac{2016}{2017}\times\frac{2018}{2017}\)
\(A=\frac{2018}{2}=1009\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.......+\frac{2}{43.45}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......+\frac{1}{43}-\frac{1}{45}\)
\(B=\frac{1}{3}-\frac{1}{45}\)
\(B=\frac{14}{45}\)
2 \(\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{2018}\times\frac{2017}{47}\)
\(=\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{47}\times\frac{2017}{2018}\)
\(=\frac{2017}{2018}\times\left(\frac{23}{47}+\frac{24}{47}\right)\)
\(=\frac{2017}{2018}\times1\)
=\(\frac{2017}{2018}\)
bạn nào xem giải thế có đúng ko
1)\(\frac{7}{8}>\frac{6}{7}>\frac{4}{5}>\frac{1}{2}>\frac{5}{16}\)
2)
a.\(\frac{3}{7}\)và\(\frac{5}{16}\)
Ta có :\(\frac{3}{7}=\frac{3\times5}{7\times5}=\frac{15}{35}\) \(\frac{5}{16}=\frac{5\times3}{16\times3}=\frac{15}{48}\)
\(\frac{15}{35}>\frac{15}{48}\Rightarrow\frac{3}{7}>\frac{5}{16}\)
b.làm tương tự như câu a nhé
bài 1:
\(\frac{6}{11}+\frac{1}{3}+\frac{5}{11}\)
\(=\left(\frac{6}{11}+\frac{5}{11}\right)+\frac{1}{3}\)
\(=\frac{11}{11}+\frac{1}{3}=1+\frac{1}{3}=\frac{3}{3}+\frac{1}{3}=\frac{4}{3}\)
bài 2:
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
\(=\left(\frac{1}{2}+\frac{1}{20}\right)+\left(\frac{1}{6}+\frac{1}{12}\right)\)
\(=\frac{11}{20}+\frac{1}{4}=\frac{11}{20}+\frac{5}{20}=\frac{15}{20}=\frac{3}{4}\)
bài 3:
a) \(\frac{3}{2}\cdot\frac{4}{5}\cdot\frac{2}{3}=\left(\frac{3}{2}\cdot\frac{2}{3}\right)\cdot\frac{4}{5}=1\cdot\frac{4}{5}=\frac{4}{5}\)
b) \(\frac{6}{7}\cdot\frac{5}{3}\cdot\frac{7}{6}=\left(\frac{6}{7}\cdot\frac{7}{6}\right)\cdot\frac{5}{3}=1\cdot\frac{5}{3}=\frac{5}{3}\)
bài 4:
a) \(\frac{2}{5}\cdot\frac{1}{4}+\frac{3}{4}\cdot\frac{2}{5}=\frac{2}{5}\cdot\left(\frac{1}{4}+\frac{3}{4}\right)=\frac{2}{5}\cdot1=\frac{2}{5}\)
b) \(\frac{6}{11}:\frac{2}{3}+\frac{5}{11}:\frac{2}{3}=\left(\frac{6}{11}+\frac{5}{11}\right):\frac{2}{3}=1:\frac{2}{3}=\frac{3}{2}\)
Bài 1:
6/11 + 1/3 + 5/11
= ( 6/11 + 5/11) + 1/3
= 11/11 + 1/3
= 1 + 1/3
= 3/3 +1/3
= 4/3
Bài 2:
1/2 + 1/6 + 1/12 + 1/20
= ( 1/2 + 1/6 + 1/12 ) + 1/20
= ( 6/12 + 2/12 + 1/12 ) + 1/20
=9/12 + 1/20
= 3/4 +1/20
= 15/20 + 1/20
= 16/20 = 4/5
Bài 3:
a) \(\frac{3}{2}\times\frac{4}{5}\times\frac{2}{3}\) \(=\left(\frac{3}{2}\times\frac{2}{3}\right)\times\frac{4}{5}\)\(=1\times\frac{4}{5}=\frac{4}{5}\)
b) \(\frac{6}{7}\times\left(\frac{5}{3}\times\frac{7}{6}\right)\) \(=\frac{6}{7}\times\frac{35}{18}\)\(=\frac{1\times5}{7\times3}=\frac{5}{21}\)
Bài 4:
a) 2/5 x 1/4 + 3/4 x 2/5
= 2/5 x ( 1/4 + 3/4)
= 2/5 x 1
= 2/5
b) 6/11 : 2/3 +5/11 : 2/3
= ( 6/11 + 5/11) x 3/2
= 11/11 x 3/2
= 1 x 3/2
= 3/2
....
=\(\frac{1}{6}\)
-\(\frac{1}{11}\)=\(\frac{5}{66}\)\(\frac{1}{6x7}+\frac{1}{7x8}+\frac{1}{8x9}+\frac{1}{9x10}+\frac{1}{10x11}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{6}-\frac{1}{11}\)
\(\frac{5}{66}\)