Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=1/2{1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99}
=1/2{1/3-1/99}
=1/2*32/99
=16/99
\(S=7(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{63}) \)
\(S=7(\frac{1}{3}-\frac{1}{63})\)
\(S=7(\frac{21}{63}-\frac{1}{63}) \)
\(S=7.\frac{20}{63}\)
\(S=\frac{20}{9}\)
Do đó:\(S<\frac{5}{2}\)
S=\(\frac{2.7}{3.5}+\frac{2.7}{5.7}+\frac{2.7}{7.9}+....+\frac{2.7}{61.63}\)và\(\frac{5}{2}\)
S=7.(\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....-\frac{1}{63}\)) và\(\frac{5}{2}\)
S=7.(\(\frac{1}{3}-\frac{1}{63}\)) và\(\frac{5}{2}\)
S=7.\(\frac{20}{63}\)và\(\frac{5}{2}\)
=>S=\(\frac{20}{9}\)so với \(\frac{5}{2}\)
=>S=\(\frac{40}{18}\)và\(\frac{45}{18}\)
=>S<\(\frac{5}{2}\)
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{101.103}\)
\(=>A=\frac{3}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\right)\)
\(=>A=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{101}-\frac{1}{103}\right)\)
\(=>A=\frac{3}{2}.\left(1-\frac{1}{103}\right)=\frac{3}{2}.\frac{102}{103}=\frac{153}{103}>1\) (vì 153>103)
Vậy A>1
sorry,dòng thứ 2 sửa lại:\(A=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{3}{101.103}\right)\) nhé!
cho x chạy từ 2 đến 20, công thức X^2/(x-1)(x+1) tổng là: 16549/840
S=10/2.12+10/12.22+10/22.32+10/32.42+.......+10/2002.2012
S=1/2-1/12+1/12-1/22+1/22-1/32+1/32-1/42+.....+1/2002-1/2012
S=1/2-1/2012
S=????
bạn tự tính nhé
S=10.1/10{1/2-1/12+1/12-1/22+1/22-1/32+...+1/2002-1/2012}
=1/2-1/2012
=1005/2012
Ta có :
\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+..+2016}\)
\(=2015.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}\right)\)
\(=2015.\left(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\right)\)
\(=2015.\left(\frac{2}{2}+\frac{2}{2.\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.\left(2+1\right)}+\frac{1}{3.\left(3+1\right)}+...+\frac{1}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2017}\right)\)
\(=2015.2.\left(1-\frac{1}{2017}\right)\)
\(=2015.2.\frac{2016}{2017}\)
=\(\frac{2015.2.2016}{2017}\)
=\(\frac{8124480}{2017}\)
Vậy \(S=\frac{8124480}{2017}\)
a) ta có:
\(\frac{-1}{2}-1\le x\le\frac{1}{2}.3\)
hay \(-1,5\le x\le1,5\)
vì x\(\in Z\) nên ta chọn x=-1,0,1
ta có:
3S=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
3S-S=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\right)\)
2S=1-\(\frac{1}{3^9}\)
s=\(\left(1-\frac{1}{3^9}\right):2\)
\(A=-\frac{1}{20}+-\frac{1}{30}+...+-\frac{1}{90}\)
\(=-\frac{1}{4.5}+-\frac{1}{5.6}+...+-\frac{1}{9.10}\)
\(=\left(-\frac{1}{4}\right)-\left(-\frac{1}{5}\right)+\left(-\frac{1}{5}\right)-\left(-\frac{1}{6}\right)+...+\left(-\frac{1}{9}\right)-\left(-\frac{1}{10}\right)\)
\(=\left(-\frac{1}{4}\right)-\left(-\frac{1}{10}\right)=-\frac{3}{20}\)
Vậy \(A=-\frac{3}{20}\)
S=2(1-1/3+1/3-1/5+...+1/97-1/99)
=2(1-1/99)
=2(98/99)
=196/99
2S=2/1*3+2/3*5+...+2/97*99
2S=1/1-1/3+1/3-1/5+...+1/97-1/99
2S=1-1/99
2S=98/99
S=49/99