Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=2^0+2^1+..+2^{100}\)
\(\Rightarrow2A=2^1+2^2+..+2^{101}\)
lấy hiệu hai phương trình ta có
\(A=2^{101}-2^0=2^{101}-1\)
.\(B=5^1+5^2+..+5^{200}\)
\(\Rightarrow5B=5^2+5^3+..+5^{201}\)
Lấy hiệu hai phương trình ta có :
\(4B=5^{201}-5\Rightarrow B=\frac{5^{201}-5}{4}\)
S = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + ... + 2^100
2S = 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + ... + 2^100 + 2^101
2S - S = ( 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + ... + 2^100 + 2^101 ) - ( 1 + 2 + 2^2 +2^3 +2^4 + 2^5 + .... + 2^100 )
S = 2^101 - 1
Vậy S = 2^101 - 1
Ta có :
S = 1 + 2 + 22 + 23 + 24 + 25 + ... + 2100
2S = 2 + 22 + 23 + 24 + 25 + ... + 2101
2S - S = ( 2 + 22 + 23 + 24 + 25 + ... + 2101 ) - ( 1 - 2 - 22 - 23 - 24 - 25 - ... - 2100 )
S = 2101 - 1