Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 1⋅2⋅3+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+48+3⋅6⋅9+4⋅8⋅12
= 6+48+162+4⋅8⋅12
= 6+48+162+384
= 600
b . Ta có \(A=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}.\)
Ta có : \(\frac{2010}{2011+2012}< \frac{2010}{2011}\) và \(\frac{2011}{2011+2012}< \frac{2011}{2012}\)
=> \(\frac{2010+2011}{2011+2012}< \frac{2010}{2011}+\frac{2011}{2012}\)
=> A < B
* Xét tử số của K, ta nhận thấy:
Số 1 được lấy 2012 lần
Số 2 được lấy 2011 lần
Số 3 được lấy 2010 lần
........
Số 2011 được lấy 2 lần
Số 2012 được lấy 1 lần
Vậy tử số viết được thành: 2012x1+2011x2+2010x3+...+2x2011+1x2012
Nên \(K=1\)
\(=>\)\(K+2011=2012\)
Vậy \(K+2011=2012\)
Chắc chắn đúng nhé!!
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015
tử số K ta thấy: số 1 xuất hiện trong tất cả các tổng con nên số 1 xuất hiện 2012 lần. số 2 xuất hiện trong 2011 tổng con nên số 2 xuất hiện 2011 lần... tưởng tự số 2012 sẽ xuất hiện 1 lần
=> tử số của K= 1.2012+2.2011+3.2010+4.2009+...+2012.1
K= 1.2012+2.2011+3.2010+4.2009+...+2012.1/2012.1+2011.2+2010.3+....+2011.2+1.2012
K=1
Cho K = 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + .... + ( 1 + 2 + 3 + .... + 2012 ) / 2012 x 1 + 2011 x 2 + 2010 x 3 + .. + 2 x 2011 + 1 x 2012 .
Tính K .
Câu hỏi tương tự Đọc thêmtớ cần gấp !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\frac{1}{1}:2+\frac{1}{2}:3+\frac{1}{3}:4+...+\frac{1}{2009}:2010+\frac{1}{2010}:2011\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{2009}-\frac{1}{2009}\right)+\left(\frac{1}{2010}-\frac{1}{2010}\right)-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}\)
~ Hok tốt ~
\(\frac{1}{1}:2+\frac{1}{2}:3+\frac{1}{3}:4+...+\frac{1}{2009}:2010+\frac{1}{2010}:2011\)
\(=\frac{1}{1}:\frac{2}{1}+\frac{1}{2}:\frac{3}{1}+\frac{1}{3}:\frac{4}{1}+...+\frac{1}{2009}:\frac{2010}{1}+\frac{1}{2010}:\frac{2011}{1}\)
\(=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{2009}\cdot\frac{1}{2010}+\frac{1}{2010}\cdot\frac{1}{2011}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2010}+\frac{1}{2010\cdot2011}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}\)
Dấu " . " là dấu nhân nhé
Ta có :
S=1-2+2^2-2^3+2^4-...-2^2011+2^2012
=>S=1+(-2)+(-2)^2+(-2)^3+(-2)^4+...+(-2)^2011+(-2)^2012
=>-2S=-2+(-2)^2+(-2)^3+(-2)^4+(-2)^5+...+(-2)^2012+(-2)^2013
=>-2S-S=(-2)^2013-1
-3S=(-2)^2013-1
=>S=(-2)^2013-1 TẤT CẢ TRÊN -3
K CHO MK NHA ĐÚNG CHUẨN LUN ĐÓ
^là gì nói mình giúp cho