Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1+2^2+3^2+4^2+...+99^2+100^2\) (đề đúng)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)+100\left(101-1\right)\)
\(=\left(1.2+2.3+3.4+...+99.100+100.101\right)-\left(1+2+3+...+100\right)\)
\(=\frac{1.2.3+2.3.3+...+100.101.3}{3}-\frac{\left(100+1\right)\left[\left(100-1\right)\div1+1\right]}{2}\)
\(=\frac{1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+100.101.\left(102-99\right)}{3}-5050\)
\(=\frac{1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-99.100.101+100.101.102}{3}-5050\)
\(=\frac{100.101.102}{3}-5050\)
\(=343400-5050\)
\(=338350\)
\(\frac{2}{3}\left(x-1\right)-x-\frac{3}{4}=1\)
<=> \(\frac{2}{3}x-\frac{2}{3}-x-\frac{3}{4}=1\)
<=> \(-\frac{1}{3}x-\frac{17}{12}=1\)
<=> \(-\frac{1}{3}x=\frac{29}{12}\)
<=> \(x=-\frac{29}{4}\)
\(\frac{5}{6}\left(x+2\right)-x-\frac{1}{2}=\frac{1}{3}\)
<=> \(\frac{5}{6}x+\frac{5}{3}-x-\frac{1}{2}=\frac{1}{3}\)
<=> \(-\frac{1}{6}x+\frac{7}{6}=\frac{1}{3}\)
<=> \(-\frac{1}{6}x=-\frac{5}{6}\)
<=> \(x=5\)
học tốt
\(a,\dfrac{1}{2}x=3+2\)
\(\dfrac{1}{2}x=5\)
\(x=5\div\dfrac{1}{2}\)
\(x=10\)
\(b,\dfrac{1}{4}x^2-\sqrt{36}=10\)
\(\dfrac{1}{4}x^2-6=10\)
\(\dfrac{1}{4}x^2=10+6\)
\(\dfrac{1}{4}x^2=16\)
\(x^2=16\div\dfrac{1}{4}\)
\(x^2=64\)
\(x^2=\left(8\right)^2\)
\(\Rightarrow x=8\)
\(M=\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{17}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)
\(M=\frac{\left(\frac{1}{30}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{24}{119}+\frac{3}{35}\right).\frac{-4}{3}}\)
\(M=\frac{\frac{-19}{60}.\frac{5}{19}}{\frac{171}{595}.\frac{-4}{3}}\)
\(M=\frac{-1}{12}:\frac{-228}{595}\)
\(M=\frac{595}{2736}\)
Ta có:
\(M=\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right)\times\frac{5}{19}}{\left(\frac{1}{17}+\frac{1}{7}-\frac{-3}{35}\right)\times\frac{-4}{3}}\)
\(M=\frac{\left(\frac{1}{30}-\frac{7}{20}\right)\times\frac{5}{19}}{\left(\frac{24}{119}+\frac{3}{35}\right)\times\frac{-4}{3}}\)
\(M=\frac{\frac{-19}{60}\times\frac{5}{19}}{\frac{171}{595}\times\frac{-4}{3}}\)
\(M=\frac{-1}{12}\div\frac{-228}{595}\)
\(M=\frac{595}{2736}\)
Vậy \(M=\frac{595}{2736}\)
a) \(\dfrac{1}{4}-3\left(\dfrac{1}{12}+\dfrac{3}{8}\right)=\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{9}{8}=-\dfrac{9}{8}\)
b) \(\left(-\dfrac{2}{3}+\dfrac{3}{5}\right):\dfrac{1}{50}-30=\left(-\dfrac{2}{3}+\dfrac{3}{5}\right).50-30=-\dfrac{100}{3}+30-30=-\dfrac{100}{3}\)
S = 22.12+22.22+...+22+102
S = 22.(12+22+...+102)
S = 4.385
S = 1540