K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

Ta có :

\(S=3+\dfrac{3}{2}+\dfrac{3}{2^2}+..............+\dfrac{3}{2^9}\)

\(\Rightarrow2S=2\left(3+\dfrac{3}{2}+\dfrac{3}{2^2}+..............+\dfrac{3}{2^9}\right)\)

\(\Rightarrow2S=6+3+\dfrac{3}{2}+\dfrac{3}{2^2}+.............+\dfrac{3}{2^8}\)

\(\Rightarrow2S-S=\left(6+3+\dfrac{3}{2}+\dfrac{3}{2^2}+.......+\dfrac{3}{2^8}\right)-\left(3+\dfrac{3}{2}+\dfrac{3}{2^2}+......+\dfrac{3}{2^9}\right)\)

\(\Rightarrow S=6-\dfrac{3}{2^9}\)

\(\Rightarrow S=6-\dfrac{3}{512}=\dfrac{3069}{512}\)

10 tháng 5 2017

\(S=3+\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^9}\)

\(=3\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\)

Đặt \(A=1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\)

\(\Rightarrow2A=2+1+...+\dfrac{1}{2^8}\)

\(\Rightarrow2A-A=\left(2+1+...+\dfrac{1}{2^8}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\right)\)

\(\Rightarrow A=2-\dfrac{1}{2^9}\)

\(\Rightarrow S=3\left(2-\dfrac{1}{2^9}\right)=6-\dfrac{3}{2^9}\)

Vậy...

10 tháng 5 2017

=> S = 3 \(\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\right)\)

S = 3 \(\left(2+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2^2}+...+\dfrac{1}{2^8}-\dfrac{1}{2^9}\right)\)

= 3\(\left(2-\dfrac{1}{2^9}\right)\)= 6 \(-\dfrac{3}{2^9}\)

TICK CHO MK NHA!ngoamokoaoa

28 tháng 3 2017

Giải:

\(S=3.\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\)

\(2S=3.\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)\)

\(2S-S=3.\left[\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\right]\)

\(S=3.\left(2-\dfrac{1}{2^9}\right)\)

\(S=3.\dfrac{1023}{512}\)

\(S=\dfrac{3069}{512}\)

28 tháng 3 2017

2.S= \(6\) + \(3\) + \(\dfrac{3}{2}\) + ..... + \(\dfrac{3}{2^8}\)

2.S - S= ( \(6\) + \(3\) + \(\dfrac{3}{2}\) + ..... + \(\dfrac{3}{2^8}\)) - (\(3\) + \(\dfrac{3}{2}\) + \(\dfrac{3}{2^2}\) + ..... + \(\dfrac{3}{2^9}\))

S= 6 - \(\dfrac{3}{2^9}\)

S= \(\dfrac{6.512}{512}\) - \(\dfrac{3}{512}\) = \(\dfrac{3069}{512}\)

Bn tự rút gọn nha, mk hơi nhát

8 tháng 5 2017

Ta có:

S = 3 + \(\dfrac{3}{2}\) + \(\dfrac{3}{2^2}\) + ........+ \(\dfrac{3}{2^9}\)

2S = 6 + 3 + \(\dfrac{3}{2^2}\) + ....... + \(\dfrac{3}{2^8}\)

Mà S = 3 + \(\dfrac{3}{2}\) + \(\dfrac{3}{2^2}\) + ........+ \(\dfrac{3}{2^9}\)

=> 2S - S = 6 - \(\dfrac{3}{2^9}\)

S = \(\dfrac{3069}{512}\)
7 tháng 5 2017

\(S=3\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\)

Đặt : \(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\\ \Rightarrow2.A=2+1+....+\dfrac{1}{2^8}\\ \Rightarrow A=2-\dfrac{1}{2^9}\\ \Rightarrow S=3\left(2-\dfrac{1}{2^9}\right)\)

31 tháng 5 2017

\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+................+\dfrac{1}{3^9}\)

\(\Rightarrow3S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+................+\dfrac{1}{3^8}\)

\(\Rightarrow3S-S=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+.............+\dfrac{1}{3^8}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+..........+\dfrac{1}{3^9}\right)\)

\(\Rightarrow2S=1-\dfrac{1}{3^9}\)

\(\Rightarrow S=\dfrac{1-\dfrac{1}{3^9}}{2}\)

31 tháng 5 2017

Ta có : 3S = \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^8}\)

3S - S = \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^8}\) - \(\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^9}\right)\)

2S = \(1-\dfrac{1}{3^9}=\dfrac{3^9-1}{3^9}\)

S = \(\dfrac{3^9-1}{2.3^9}\)

Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)

Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)

Từ (1) và (2) suy ra đpcm.

1 tháng 4 2022

Hay quá

 

17 tháng 4 2017

\(A=11\dfrac{3}{13}-\left(2\dfrac{4}{7}+5\dfrac{3}{13}\right)\)

\(A=11\dfrac{3}{13}-5\dfrac{3}{13}-2\dfrac{4}{7}\)

\(A=6-2\dfrac{4}{7}\)

\(A=5\dfrac{7}{7}-2\dfrac{4}{7}\)

\(A=3\dfrac{3}{7}\)

\(B=\left(6\dfrac{4}{9}+3\dfrac{7}{11}\right)-4\dfrac{4}{9}\)

\(B=\left(6\dfrac{4}{9}-4\dfrac{4}{9}\right)+3\dfrac{7}{11}\)

\(B=2+3\dfrac{7}{11}\)

\(B=5\dfrac{7}{11}\)

\(C=\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}-\dfrac{9}{11}+1\dfrac{5}{7}\)

\(C=\dfrac{-5}{7}.\left(\dfrac{2}{11}+1\right)-\dfrac{9}{11}+1\dfrac{5}{7}\)

\(C=\dfrac{-5}{7}.\dfrac{13}{11}-\dfrac{9}{11}+1\dfrac{5}{7}\)

\(C=\dfrac{-65}{77}-\dfrac{9}{11}+1\dfrac{5}{7}\)

\(C=\dfrac{4}{11}+1\dfrac{5}{7}\)

\(C=\dfrac{160}{11}\)

\(D=0,7.2\dfrac{2}{3}.20.0,375.\dfrac{5}{28}\)

\(D=\dfrac{7}{10}.\dfrac{8}{3}.20.\dfrac{375}{1000}.\dfrac{5}{28}\)

\(D=\dfrac{7}{28}=\dfrac{5}{2}\)

\(E=\left(-6,17+3\dfrac{5}{9}-2\dfrac{36}{97}\right)\left(\dfrac{1}{3}-0,25-\dfrac{1}{12}\right)\)

\(E=\left(-6,17+3\dfrac{5}{9}-2\dfrac{36}{97}\right)\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{12}\right)\)

\(E=\left(-6,17+3\dfrac{5}{9}-2\dfrac{36}{97}\right)\left(\dfrac{1}{12}-\dfrac{1}{12}\right)\)

\(E=\left(-6,17+3\dfrac{5}{9}-2\dfrac{36}{97}\right).0\)

\(\Rightarrow E=0\)

4 tháng 5 2017

1)Ta thấy: \(\dfrac{1}{n^2}=\dfrac{1}{n.n}< \dfrac{1}{\left(n-1\right)n}\)

=>A=\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}...+\dfrac{1}{50^2}< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49.50}\)

A<\(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

Vậy A<2

2)Ta có:2S=6+3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^8}\)

2S-S=(6+3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^8}\))-(3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^9}\))

=>S=6-\(\dfrac{3}{2^9}=\dfrac{6.2^9-3}{2^9}\)

Vậy S=\(\dfrac{6.2^9-3}{2^9}\)

4 tháng 5 2017

Các bạn cố giúp mink nhé mai mình phải nộp rồi