Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\frac{3}{64}+\frac{3}{128}+\frac{3}{256}+\frac{3}{512}+\frac{3}{1024}\)
=\(3.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}\right)\)
=\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}+\frac{1}{128}-\frac{1}{256}+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1024}\right)\)
=\(3.\left(1-\frac{1}{1024}\right)=3.\left(\frac{1024}{1024}-\frac{1}{1024}\right)=3.\frac{1023}{1024}=\frac{3069}{1024}\)
Chúc em học tốt
Bài 1:
Ta thấy: 1 + 2 = 3 3 + 5 = 8
2 + 3 = 5 5 + 8 = 13
Dãy số trên được lập theo quy luật sau: Kể từ số hạng thứ 3 trở đi mỗi số hạng bằng tổng của hai số hạng đứng liền trước nó.
Ba số hạng tiếp theo là: 21 + 34 = 55; 34 + 55 = 89; 55 + 89 = 144
Vậy dãy số được viết đầy đủ là: 1, 2, 3, 5, 8, 13, 34, 55, 89, 144
Bài 2:
Ta nhận thấy: 8 = 1 + 3 + 4 27 = 4+ 8 + 15
15 = 3 + 4 + 8
Từ đó ta rút ra được quy luật của dãy số là: Mỗi số hạng (kể từ số hạng thứ 4) bằng tổng của ba số hạng đứng liền trước nó.
Viết tiếp ba số hạng, ta được dãy số sau: 1, 3, 4, 8, 15, 27, 50, 92, 169.
Bài 3:
Giải:
a). Ta nhận xét :
Số hạng thứ 10 là : 1024 = 512 x 2
Số hạng thứ 9 là : 512 = 256 x 2
Số hạng thứ 8 là : 256 = 128 x 2
Số hạng thứ 7 là : 128 = 64 x 2
……………………………..
Từ đó ta suy luận ra quy luật của dãy số này là: mỗi số hạng của dãy số gấp đôi số hạng đứng liền trước đó.
Vậy số hạng đầu tiên của dãy là: 1 x 2 = 2.
b). Ta nhận xét :
Số hạng thứ 10 là : 110 = 11 x 10
Số hạng thứ 9 là : 99 = 11 x 9
Số hạng thứ 8 là : 88 = 11 x 8
Số hạng thứ 7 là : 77 = 11 x 7
…………………………..
Từ đó ta suy luận ra quy luật của dãy số là: Mỗi số hạng bằng số thứ tự của số hạng ấy nhân với 11.
Vậy số hạng đầu tiên của dãy là : 1 x 11 = 11.
bài 1:
các số đó là : 55, 89, 144
bài 2 :
đề bài sai, mk nghĩ thế ( mong online math đừng trừ điểm nhé )
bài 3 :
a, nhận xét :
ta thấy : số hạng thứ 10 = 1024 = 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 ( 10 số 2 )
số hạng thứ 9 = 512 = 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 ( 9 số 2 )
tương tự, ta có :
số hạng thứ 8 = 8 số 2 nhân với nhau
số hạng thứ 7 = 7 số 2 nhân với nhau
=> số hạng thứ 1 = 2
b, gọi số hạng đầu tiên là x, ta có :
( 110 - x ) : 11 + 1 = 10 ( theo công thức tìm số số hạng )
110 - x = ( 10 - 1 ) . 11
110 - x = 99
x = 110 - 99
x = 11
vậy số hạng đầu tiên của dãy là 11
kick mk nha
thank you very much
tính biểu thức sau
\(a=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+..........+\frac{1}{512}+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}+\frac{1}{2^{11}}\)
\(2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
\(A=2^{11}-2\)
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
1/2=1/1-1/2
1/4=1/2-1/4
1/8=1/4-1/8
...................
1/1024=1/512-1/1024
Đặt biểu thức=A
A=1/1-1/2+1/2-1/4+1/4-1/8+........+1/512-1/1024
A=1/1-1/1024
A=1023/1024
bạn thấy cách của mik có dễ hiểu ko,nếu dễ hiểu thì k nha
có cách khác : 1/2+ 1/4= 3/4
1/2+ 1/4 +1/8 = 7/8
vậy :1/2+ 1/4 +1/8 + ....+ 1/1024 =1023/1024
=1-(1/2+1/2-1/4+1/4-1/8+1/8...-1/1024+1/1024-1/1024)
=1-1/1024
=1023/1024
\(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+..........+\frac{1}{1024}\)
\(2A=2.\left(1+\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{1024}\right)\)
\(2A=2+1+\frac{1}{2}+...........+\frac{1}{512}\)
\(2A-A=\left(2+1+\frac{1}{2}+...........+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+..............+\frac{1}{1024}\right)\)
\(2A-A=2-\frac{1}{1024}\)
\(A=\frac{2048}{1024}-\frac{1}{1024}\)
\(A=\frac{2047}{1024}\)