K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2023

\(2H=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{49.51}\)

\(2H=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{51-49}{49.51}\)

\(2H=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+...+\dfrac{51}{49.51}-\dfrac{49}{49.51}\)

\(2H=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

\(2H=1-\dfrac{1}{51}\)

\(2H=\dfrac{50}{51}\)

\(H=\dfrac{25}{51}\)

24 tháng 4 2017

cho minh xin yeu cau de bai

26 tháng 4 2017

trả hiểu yêu cầu đề bài là j cả

6 tháng 5 2018

A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)

=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)

=2.(1-1/101)

=2.(101/101-1/101)

=2.100/101

200/101

6 tháng 5 2018

B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)

=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)

=2.(1/1+1/101)

=2.(101/101+1/101)

=2.102/101

=204/101

10 tháng 4 2017

Ta đặt

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{49.51}=A\)

\(\Rightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+..+\dfrac{2}{49.51}\)

\(2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

\(\Rightarrow2A=\dfrac{1}{1}-\dfrac{1}{51}=\dfrac{50}{51}\)

\(A=\dfrac{50}{51}:2=\dfrac{25}{51}\)

Vậy : \(\dfrac{1}{3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}=\dfrac{25}{51}\)

10 tháng 4 2017

Cảm ơn bạn nhiều nha!!!

3 tháng 4 2018

a)

\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{24.25}\)

\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{24}-\dfrac{1}{25}\)

\(=\dfrac{1}{5}-\dfrac{1}{25}\)

\(=\dfrac{4}{25}\)

b)

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

3 tháng 4 2018

a) \(\dfrac{1}{5.6}=\dfrac{1}{5}-\dfrac{1}{6}\)

\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{24.25}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)b) \(\dfrac{2}{1.3}=1-\dfrac{1}{3}\)

tương tự

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

24 tháng 4 2017

Giải:

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2009.2011}.\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right).\)

\(=\dfrac{1}{2}\left[\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{2009}-\dfrac{1}{2009}\right)+\left(1-\dfrac{1}{2011}\right)\right].\)

\(=\dfrac{1}{2}\left[0+0+0+...+\left(1-\dfrac{1}{2011}\right)\right].\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2011}\right).\)

\(=\dfrac{1}{2}.\dfrac{2010}{2011}=\dfrac{2010}{4022}=\dfrac{1005}{2011}.\)

~ Học tốt nha bn!!! ~

Bài mik đúng thì nhớ tick mik nha!!!

24 tháng 4 2017

1\1-1\3+1\3-1\5+1\5-1\7+...+ 1\2009- 1\2011

=1- 1\2011

=2010\2011

dấu \ là 1 trên vui

10 tháng 5 2018

\(B=\dfrac{1}{1.3}\dfrac{1}{3.5}+\dfrac{1}{5.7}+.....+\dfrac{1}{2003.2005}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2003.2005}\right)\\ =\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-...+\dfrac{1}{2003}-\dfrac{1}{2005}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{2005}\right)\\ =\dfrac{1}{2}.\dfrac{2004}{2005}\\ =\dfrac{1002}{2005}\)

10 tháng 5 2018

Hình như bn vt sai đề phải ko???

lolang

25 tháng 4 2018

A = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

A=\(\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}\)

25 tháng 4 2018

B = \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{49.51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{51}=\dfrac{51}{102}-\dfrac{2}{102}=\dfrac{49}{102}\)

AH
Akai Haruma
Giáo viên
18 tháng 4 2018

Lời giải:

Ta có: \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2009.2011}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2009.2011}\)

\(2A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{2011-2009}{2009.2011}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-....+\frac{1}{2009}-\frac{1}{2011}\)

\(2A=1-\frac{1}{2011}=\frac{2010}{2011}\Rightarrow A=\frac{1005}{2011}\)

30 tháng 6 2017

\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(A=\dfrac{1}{2}.\left(\dfrac{100}{101}\right)-\dfrac{1}{101}\)

\(A=\dfrac{50}{101}-\dfrac{1}{101}=\dfrac{49}{101}\)

30 tháng 6 2017

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}-\dfrac{1}{101}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)-\dfrac{1}{101}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(=\dfrac{1}{2}.\dfrac{100}{101}-\dfrac{1}{101}=\dfrac{50}{101}-\dfrac{1}{101}=\dfrac{49}{101}\)

Vậy...