K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

Những số nhỏ hơn 100 chia hết cho 3 là :

0;3;6;9;12;...;99 ( 99-0 ):3+1=34(số)

Những số nhỏ hơn 100 chia hết cho 9 là :

0;9;18;27;...;99 ( 99-0 ):9+1=12(số)

Vậy sẽ có 34-12=22 số chia hết cho 3 nhưng không chia hết cho 9

22 tháng 7 2017

mij nói lầ tính tổng ma bạn

23 tháng 10 2017

Bỏ mũ 2006 nha mọi người!

10 tháng 8 2018

Tuy có vẻ hơi muộn nhưng thôi leuleu

Nếu A là số tự nhiên ⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

\(\Rightarrow7^{2004}-3^{92^{94}}⋮10\)

Thật vậy, ta có :

72004 với lũy thừa là 2004 ⋮ 4

⇒ 72004 = ( .......... 9 )

392^94 với lũy thừa là 9294 mà 92 ⋮ 4 ⇒ 9294 ⋮ 4

⇒ 392^94 = ( .......... 9 )

⇒ 72004 - 392^94 = ( .......... 9 ) - ( ............ 9) = ( ........... 0 ) ⋮ 10

\(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

A=1/10.(72004-392^94) là số tự nhiên.

7 tháng 11 2017

\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)

Vậy \(\left(3n\right)^{100}⋮81\)

Chúc em học tốt!vui

7 tháng 11 2017

Cảm ơn cj nhìu nhìu lắm!!!hihingaingung

11 tháng 4 2017

Giống nhau:

- Đều là các số tự nhiên

Khác nhau:

-số nguyên tố tự nhiên chỉ có hai ước là 1 và chính nó

-Hợp số là số tự nhiên có nhiều hơn hai ước

Tích của hai số nguyên tố là hợp số bởi ngoài ước là 1 ra nó còn có ước là hai số nguyên tố đó nữa.

11 tháng 4 2017

thanks

25 tháng 7 2017

1134

25 tháng 3 2017

ko có chuyện chia mà được thương và số dư bằng nhau đâu bạn ạ

6 tháng 4 2017

a Để N la so nguyen suy ra : 4n -5chia het 2n-1 2(2n-1)-3chia het 2n- 1 suy ra 2n-1 thuoc Ước của 3

22 tháng 3 2017

a. (4n-5)/(2n-1)=2 dư -3 vậy 2n-1 phải \(\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

xét 2n-1=1 n=1

2n-1=-1 n=0

2n-1=3 n=2

2n-1=-3 n=-1

vậy n=\(\left\{-1;0;1;2\right\}\)

b. n+2017= n+1+2016 mà 2016 chia hết cho 9 nên suy ra n+1 phải chia hết cho 9 thuộc ước của 9 (phần còn lại tự thử vào nha như câu a ý mình lười lắm)

c.vì n>3 nên n/3 dư 1 hoăc 2 ta co n= 3k+1 hoặc n= 3k+2

xét n= 3k+1 thì n^2+2018= (3k+1)^2+2018= 9k^2+1+2018=9k^2+2019=3(3k^2+673) chia hết cho 3 là hợp số

xét n=3k+2 thì n^2+2018=(3k+2)^2+2018=9k^2+4+2018=9k^2+2022=3(3k^2+674) chia hết cho 3 là hợp số

vậy n^2+2018 là hợp số

26 tháng 7 2017

dấu hiệu chia hết cho 4 là : 2 số cuối cùng chia hết cho 4 thì số đó chia hết cho 4

dấu hiệu chia hết 5 : số có tận cùng là 0 ; 5 thì chia hết 5

\(x1357y⋮5\) => y=0 hoặc 5

TH1 : y = 0

=> x13570\(⋮5\)

vì 70 \(⋮4̸\) ( loại )

TH2 : y = 5

=> \(x13575⋮5\) nhưng 75 ko chia hết 4 (loại )

từ 2 trường hợp trên => ko tồn tại y

\(\Leftrightarrow\) ko có số x1357y \(⋮5;4\)

21 tháng 10 2017

\(\overline{x1357y}⋮5\) nên \(y\in\left\{0;5\right\}\).

Do \(75⋮4\) nên \(y=0\). Ta được \(\overline{x13570}\).

\(\overline{x13570}⋮4;5\) nên \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\).

Vậy \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)\(y=0\).

16 tháng 7 2017

Ta có: \(\left|x-y\right|+\left|x-1\right|\ge0\)

\(\Rightarrow A=\left|x-y\right|+\left|x-1\right|+2017\ge2017\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|x-1\right|=0\end{matrix}\right.\Rightarrow x=y=1\)

Vậy \(MIN_A=2017\) khi x = y = 1