K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2015

đặt A=(-7) + (-7)+ (-7)+ ... + (-7)2006 + (-7)2007

=>-7A= (-7)+ (-7)+ ... + (-7)2007 + (-7)2008

=>-7A-A= (-7)+ (-7)+ ... + (-7)2007 + (-7)2008-(-7) - (-7)- (-7)- ... - (-7)2006 - (-7)2007

=>-8A=(-7)2008-(-7)

=72008+7

=>A=(72008+7):(-8)

13 tháng 11 2017

\(A=\left(-7\right)+\left(-7\right)^3+...+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)

\(A=\left(-7\right).\left[1+\left(-7\right)+\left(-7\right)^2\right]+...+\left(-7\right)^{2005}.\left[1+\left(-7\right)+\left(-7\right)^2\right]\)

\(A=\left(-7\right).42+...+\left(-7\right)^{2005}.43\)

\(A=42.\left[\left(-7\right)+...+\left(-7\right)^{2005}\right]\)

\(=>A⋮43\)

22 tháng 12 2017

\(A=\left(-7\right)+\left(-7\right)^2+......+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+.......\) \(+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)\left[1+\left(-7\right)+\left(-7\right)^2\right]+......+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+\left(-7\right)^3.43+......+\left(-7\right)^{2005}.43\)
\(=43\left[\left(-7\right)+\left(-7\right)^3+.....+\left(-7\right)^{2005}\right]\).
Suy ra A chia hết cho 43.


22 tháng 12 2017

A=(-7+-7^2+-7^3)+.....+(-7^2005+-7^2006+-7^2007)

A=-7(1+-7+-7^2)+.....+-7^2005(1+-7+-7^2)

A=-7.43+....+-7^2005.43\(⋮\)43\(\Rightarrow\)dpcm

27 tháng 3 2017

Ta có: A = (-7) + (-7)2 + ... + (-7)2006 + (-7)2007.

\(\Rightarrow\)A = [ (-7) + (-7)2 + (-7)3 ] + ... + [ (-7)2005 + (-7)2006 + (-7)2007 ]

\(\Rightarrow\)A = (-7). [ 1 + (-7) + (-7)2 ] + ... + (-7)2005 . [ 1 + (-7) + (-7)2 ]

\(\Rightarrow\)A = (-7). 43 + ... + (-7)2005 . 43

\(\Rightarrow\)A = 43. [ (-7) + ... + (-7)2005 ] \(⋮\) 43

\(\Rightarrow\)A \(⋮\) 43

Vậy A \(⋮\) 43.

Chúc pạn hok tốt!!!

5 tháng 2 2020

a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)

Lấy 7S trừ S ta có : 

7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)

6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)

21 tháng 10 2016

Đặt \(A=\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\)

\(\frac{-1}{7}.A=\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+\left(\frac{-1}{7}\right)^3+...+\left(\frac{-1}{7}\right)^{2008}\)

\(A-\frac{-1}{7}.A=\left[\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\right]-\left[\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+\left(\frac{-1}{7}\right)^3+...+\left(\frac{-1}{7}\right)^{2008}\right]\)

\(A+\frac{1}{7}.A=\left(\frac{-1}{7}\right)^0-\left(\frac{-1}{7}\right)^{2008}\)

\(\frac{8}{7}.A=1-\left(\frac{1}{7}\right)^{2008}\)

\(\frac{8}{7}.A=1-\frac{1}{7^{2008}}\)

\(A=\left(1-\frac{1}{7^{2008}}\right):\frac{8}{7}=\frac{\left(1-\frac{1}{7^{2008}}\right).7}{8}\)