Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt T=1+5+5^2+5^3+5^4+...5^2016
5T=5(1+5+5^2+5^3+5^4+...5^2016)
5T=5+52+53+...+52017
5T-T=(5+52+53+...+52017)-(1+5+5^2+5^3+5^4+...5^2016)
4T=52017-1
T=(52017-1)/4
Gọi S =\(1+5+5^2+5^3+5^4+...+5^{2016}\)
\(\Rightarrow5S=5.\left(1+5+5^2+5^3+5^4+...+5^{2016}\right)\)
\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{2016}\)\(+5^{2017}\)
\(\Rightarrow5S-S=5+5^2+5^3+5^4+...+5^{2016}\)\(+5^{2017}\)\(-\left(1+5+5^2+5^3+5^4+...+5^{2016}\right)\)
\(\Rightarrow4S=5^{2017}-1\)
Vậy ta thấy 5A=5+5^2+5^3+5^4+...+5^2009+5^2010
=> 5A-A= 5^2010-1
=> 4A=5^2010-1=> 4A=(5^2010-1)/4
đến đaay em tính ra bằng máy tính hay để nguyên thì chắc chắn cô giáo sẽ cho điểm, tốt nhất cứ để nguyên nhé :)
Nguyễn đức hiếu làm sai kìa
Đoạn cuối :
4A = 52020 -1
\(A = { {5mũ2020-1} \over 4}\)
7) Bạn xem lại đề. Phải chia hết cho 26 chứ ???
8) Đặt A = 2 + 22 + 23 + ... + 2100
Nhóm 2 số lại:
A= 2(1+2)+23(1+2)+25(1+2)+...+299(1+2)=2.3+23.3+25.3+...+299.3=3(2+23+25+...+299) chia hết cho 3
Tương tự nhóm 4 số sẽ được A chia hết cho 5.
A chia hết cho 3 và 5 nên A chia hết cho 15
Lời giải:
Gọi tổng trên là $K$
$K=1+5^2+5^3+5^4+...+5^{200}$
$5K=5+5^3+5^4+5^5+...+5^{201}$
$\Rightarrow 5K-K = 5+5^{201}-1-5^2$
$\Rightarrow 4K = 5^{201}-21$
$\Rightarrow K= \frac{5^{201}-21}{4}$
1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + ........+ 95/96 + 96/97 + 97/98 + 98/99 + 99/100 = ?
Số các số hạng là:
(2000 - 100) : 1 + 1 = 1901
Tổng là:
(2000 + 100) x 1901 : 2 = 1996050
Đáp số : 1996050
Đặt S=5+52+53+...+596
=>5S=52+53+54+...+597
=>5S-S=4S=(52+53+54+...+597)-(5+52+53+...+596)
=>4S=597-5
=>S=(597-5)/4
Ta có : 5 + 5^2 +5^3 + 5^4 + 5^5 +...+ 5^96
=> 5 ( 5 + 5^2 +5^3 + 5^4 + 5^5 +...+ 5^96 )
= 5^2 + 5^3 + 5^4 + 5^5 + 5^6 +...+ 5^97
=> 5^2 + 5^3 + 5^4 + 5^5 + 5^6 +...+ 5^97 - 5 - 5^2 - 5^3 - 5^4 - 5^5 -...- 5^96
= 5^97 - 5