Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Đặt A = 1+(-2)+3+(-4)+...+19+(-20)
A = ( 1+3+5+... + 19 ) - ( 2+4+6+... + 20 )
Mỗi nhóm trên có số hạng là:
( 19-10):2+1 = 10 số hạng
A = ( 1+19 ).10:2 - ( 20+2).10:2
A = 100 - 110
A = -10
2/
1 - 2 + 3 - 4 + ... + 99 - 100
= ( 1 - 2 ) + ( 3 - 4 ) + ... + ( 99 - 100 )
= ( - 1 ) + ( - 1 ) + ... + ( - 1 )
Từ 1 → 100 có 100 số hạng mà chia 2 số 1 nhóm
⇒ Số nhóm là:
100 : 2 = 50
mà mỗi nhóm bằng - 1
⇒ Tổng = - 50.
3/
a, 2-4+6-8+...+48-50
= ( 2-4)+( 6-8)+...+( 48-50)
= -2-2-...-2
= ( -2). 12
= -24
4/
-1+2-5+7-..+97-99
=(-1-99)+(-3-97)+...+(-49-51)
=(-100)+(-100)+...+(-100)
Có 50 cặp -100
Nên Tổng bằng : -100.50=-5000
Vậy....=-5000
5/
1+2-3-4+.....+97+98-99-100
=1+(2-3-4)+5+.....+97+(98-99-100)
=1+0+0+0+......+0+(-101)
=1+(-101)
=-100
Ta có : 1 + (-2) + 3 + (-4) + ...... + 19 + (-20)
= [1 + (-2)] + [3 + (-4)] + ...... + [19 + (-20)]
= -1 + -1 + -1 + ..... + -1
= -1.10
= -10
1. 1+-(2)+3+(-4)+......+19+(-20)=(-1)+(-1)+....+(-1)=(-1).10=-10
2.1-2+3-4+.....+99-100=-1+-1+...+-1=-1.50=-50
a) 1 + (-2) + 3 + (-4) + .. + 19 + (-20)
= (-1) + (-1) + ... + (-1) (có 10 số -1)
= (-1) . 10
= -10
b) 1 - 2 + 3 - 4 + ... + 99 - 100
= (-1) + (-1) + ... + (-1) (có 50 số -1)
= (-1) . 50
= -50
c) 2 - 4 + 6 - 8 + ... + 48 - 50
= (-2) + (-2) + ... + (-2) (có 25 số -2)
= (-2) . 25
= -50
d) -1 + 3 - 5 + 7 - ... + 97 - 99
= (-1) + (-2) + (-2) + ... (-2) (có 49 số -2)
= (-1) + (-2) . 49
= (-1) + (-98)
= -99
e) 1 + 2 - 3 - 4 + ... + 97 + 98 - 99 - 100
= 1 + 2 - 3 - 4 + ... + 97 + 98 - 99 - 100 + 101 (ta cộng thêm 101 cho dễ tính)
= 1 + (2 - 3 - 4 + 5) + ... + (98 - 99 - 100 + 101)
= 1 + 0 + ... + 0
= 1 - 101 (ta bớt 101 để ra kết quả vì lúc nãy thêm 101)
= -100
Ta đặt biểu thức là :
A = 2/1 x 4 + 2/4 x 7 + 2/7 x 10 + ... + 2/97 x 100
A = 2 - 2/4 + 2/4 - 2/7 + 2/7 - 2/10 + ... + 2/97 - 2/100
A = 2 - 2 /100
A = 99/50
A=2/3 x (1-1/4+1/4-1/7+......+1/97-1/100)
= 2/3 x (1-1/100)
= 2/3 x 99/100
= 33/50
A=\(\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+........+\frac{3}{97.100}\right)\)
=\(\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...........+\frac{1}{97}-\frac{1}{100}\right)\)
=\(\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
=\(\frac{2}{3}.\frac{99}{100}\)
=\(\frac{33}{50}\)
\(D=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}\)
\(3D=\frac{2.3}{1.4}+\frac{2.3}{4.7}+...+\frac{2.3}{97.100}\)
\(3D=2\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(3D=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(3D=2\left(1-\frac{1}{100}\right)\)
\(3D=2\cdot\frac{99}{100}\)
\(3D=\frac{99}{50}\)
\(D=\frac{99}{50}:3\)
\(D=\frac{33}{50}\)
1-2-3-4+5-6-7-8+9-10-11-12+...+97-98-99-100
=(1-2-3-4)+(5-6-7-8-)+(9-10-11-12)+....+(97-98-99-100)
=(-8)+(-16)+(-24)+.....+(-200)
=(-8).(1+2+3+4+.....+25)
=(-8).325
=(-2600)
\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
= \(\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
= \(\frac{2}{3}\left(1-\frac{1}{100}\right)\)
= \(\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)