K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

Đặt \(A=\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\)

\(\frac{-1}{7}.A=\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+\left(\frac{-1}{7}\right)^3+...+\left(\frac{-1}{7}\right)^{2008}\)

\(A-\frac{-1}{7}.A=\left[\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\right]-\left[\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+\left(\frac{-1}{7}\right)^3+...+\left(\frac{-1}{7}\right)^{2008}\right]\)

\(A+\frac{1}{7}.A=\left(\frac{-1}{7}\right)^0-\left(\frac{-1}{7}\right)^{2008}\)

\(\frac{8}{7}.A=1-\left(\frac{1}{7}\right)^{2008}\)

\(\frac{8}{7}.A=1-\frac{1}{7^{2008}}\)

\(A=\left(1-\frac{1}{7^{2008}}\right):\frac{8}{7}=\frac{\left(1-\frac{1}{7^{2008}}\right).7}{8}\)

5 tháng 2 2020

a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)

Lấy 7S trừ S ta có : 

7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)

6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)

5 tháng 7 2015

gọi là A đi

\(A=1+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2003}\Rightarrow\frac{-1}{7}A=-\frac{1}{7}+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2004}\)

=> \(-\frac{1}{7}A-A=-\frac{8}{7}A=\left[\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2004}\right]-\left[1+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2003}\right]=-1+\left(-\frac{1}{7}\right)^{2004}\)

\(\Rightarrow A=\left(-1+\left(-\frac{1}{7}\right)^{2004}\right):-\frac{8}{7}\)

5 tháng 7 2015

(-1/7)0+(-1/7)1+(-1/7)2+...+(-1/7)2003

=1-1/7+1/7-1/7+....+1/7-1/7

=1

23 tháng 6 2015

đặt A=(-7) + (-7)+ (-7)+ ... + (-7)2006 + (-7)2007

=>-7A= (-7)+ (-7)+ ... + (-7)2007 + (-7)2008

=>-7A-A= (-7)+ (-7)+ ... + (-7)2007 + (-7)2008-(-7) - (-7)- (-7)- ... - (-7)2006 - (-7)2007

=>-8A=(-7)2008-(-7)

=72008+7

=>A=(72008+7):(-8)