K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

Đặt \(u=\left(x^3-2x^x+3x+1\right)\Rightarrow du=\left(3x^2-4x+3\right)dx;dv=\frac{dx}{e^{2x}}\Rightarrow v=-\frac{2}{e^{2x}}\)

Ta được : \(-\frac{2}{e^{2x}}\left(x^3-2x^2+3x+1\right)|^1_0+2\int\limits^1_0\left(\frac{3x^2-4x+3}{e^{2x}}\right)dx=2-\frac{6}{e^2}+2J\)

Tương tự ta tính J

Đăth \(u_1=\left(3x^2-4x+3\right)\Rightarrow du_1=\left(6x-4\right)dx;dv_1=\frac{dx}{e^{2x}}\Rightarrow v_1=-\frac{2}{e^{2x}}\left(1\right)\)

Do đó :

\(J=-\frac{2}{e^{2x}}\left(3x^2-4x+3\right)|^1_0+2\int\limits^1_0\frac{6x-4}{e^{2x}}dx=6-\frac{4}{e^2}+2K\left(2\right)\)

Ta tính K :

\(K=\int\limits^1_0\frac{6x-4}{e^{2x}}dx\)

Đặt \(u_2=6x-4\Rightarrow du_2=6dx;dv_2=\frac{dx}{e^{2x}}\Rightarrow v_2=-\frac{2}{e^{2x}}\)

Do đó : \(K=-\frac{2}{e^{2x}}\left(x-4\right)|^1_0+2\int\limits^1_0\frac{6dx}{e^{2x}}=\frac{6}{e^x}-8-6\frac{1}{e^{2x}}|^1_0\left(\frac{1}{e^2}-1\right)=-2\left(3\right)\)

Thay (3) vào (2) 

\(J=6-\frac{4}{e^2}+2\left(-2\right)=2-\frac{4}{e^2}\)

Lại thay vào (1) ta có :

\(I=2-\frac{6}{e^2}+2\left(2-\frac{4}{e^2}\right)=6-\frac{14}{e^2}\)

4 tháng 4 2016

\(I=\frac{1}{2}\int\limits_0^1\left(x-2\right)d\left(e^{2x}\right)=\frac{1}{2}\left[\left(x-2\right)e^{2x}|^1_0-\int\limits^1_0e^{2x}d\left(x-2\right)\right]=\frac{1}{2}\left[-e^2+2-\int\limits^1_0e^{2x}dx\right]\)

  \(=\frac{1}{2}\left[-e^2+2-\frac{1}{2}e^{2x}|^1_{ }\right]=\frac{1}{2}\left[-e^2+2-\frac{1}{2}\left(e^2-1\right)\right]\)

  \(=-\frac{3}{4}e^2+\frac{5}{4}\)

NV
28 tháng 2 2019

1/ \(I=\int\limits^1_0\dfrac{2x+1}{x^2+x+1}dx=\int\limits^1_0\dfrac{d\left(x^2+x+1\right)}{x^2+x+1}=ln\left|x^2+x+1\right||^1_0=ln3\)

2/ \(\int\limits^{\dfrac{1}{2}}_0\dfrac{5x}{\left(1-x^2\right)^3}dx=-\dfrac{5}{2}\int\limits^{\dfrac{1}{2}}_0\dfrac{d\left(1-x^2\right)}{\left(1-x^2\right)^3}=\dfrac{5}{4}\dfrac{1}{\left(1-x^2\right)^2}|^{\dfrac{1}{2}}_0=\dfrac{35}{36}\)

3/ \(\int\limits^1_0\dfrac{2x}{\left(x+1\right)^3}dx\Rightarrow\) đặt \(x+1=t\Rightarrow x=t-1\Rightarrow dx=dt;\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=1\Rightarrow t=2\end{matrix}\right.\)

\(I=\int\limits^2_1\dfrac{2\left(t-1\right)dt}{t^3}=\int\limits^2_1\left(\dfrac{2}{t^2}-\dfrac{2}{t^3}\right)dt=\left(\dfrac{-2}{t}+\dfrac{1}{t^2}\right)|^2_1=\dfrac{1}{4}\)

4/ \(\int\limits^1_0\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}dx\)

Kĩ thuật chung là tách và sử dụng hệ số bất định như sau:

\(\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}=\dfrac{ax+b}{x^2+1}+\dfrac{c}{x+2}=\dfrac{\left(a+c\right)x^2+\left(2a+b\right)x+2b+c}{\left(x^2+1\right)\left(x+2\right)}\)

\(\Rightarrow\left\{{}\begin{matrix}a+c=0\\2a+b=4\\2b+c=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=0\\a=-c=2\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^1_0\left(\dfrac{2x}{x^2+1}-\dfrac{2}{x+2}\right)dx=\int\limits^1_0\dfrac{d\left(x^2+1\right)}{x^2+1}-2\int\limits^1_0\dfrac{d\left(x+2\right)}{x+2}=ln\dfrac{8}{9}\)

5/ \(\int\limits^1_0\dfrac{x^2dx}{x^6-9}\Rightarrow\) đặt \(x^3=t\Rightarrow3x^2dx=dt\Rightarrow x^2dx=\dfrac{1}{3}dt;\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=1\end{matrix}\right.\)

\(I=\dfrac{1}{3}\int\limits^1_0\dfrac{dt}{t^2-9}=\dfrac{1}{18}\int\limits^1_0\left(\dfrac{1}{t-3}-\dfrac{1}{t+3}\right)dt=\dfrac{1}{18}ln\left|\dfrac{t-3}{t+3}\right||^1_0=-\dfrac{1}{18}ln2\)

6/ Tương tự câu 4, sử dụng hệ số bất định ta tách được:

\(\int\limits^2_1\dfrac{2x-1}{x^2\left(x+1\right)}dx=\int\limits^2_1\left(\dfrac{3x-1}{x^2}-\dfrac{3}{x+1}\right)dx=\int\limits^2_1\left(\dfrac{3}{x}-\dfrac{1}{x^2}-\dfrac{3}{x+1}\right)dx\)

\(=\left(3ln\left|\dfrac{x}{x+1}\right|+\dfrac{1}{x}\right)|^2_1=3ln\dfrac{4}{3}-\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
6 tháng 3 2017

Câu 1)

Ta có \(I=\int ^{1}_{0}\frac{dx}{\sqrt{3+2x-x^2}}=\int ^{1}_{0}\frac{dx}{4-(x-1)^2}\).

Đặt \(x-1=2\cos t\Rightarrow \sqrt{4-(x-1)^2}=\sqrt{4-4\cos^2t}=2|\sin t|\)

Khi đó:

\(I=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{d(2\cos t+1)}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{2\sin tdt}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}dt=\left.\begin{matrix} \frac{2\pi}{3}\\ \frac{\pi}{2}\end{matrix}\right|t=\frac{\pi}{6}\)

Câu 3)

\(K=\int ^{3}_{2}\ln (x^3-3x+2)dx=\int ^{3}_{2}\ln [(x+2)(x-1)^2]dx\)

\(=\int ^{3}_{2}\ln (x+2)d(x+2)+2\int ^{3}_{2}\ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\): Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln t dt=t\ln t-t\)

\(\Rightarrow K=\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x+2)[\ln (x+2)-1]+2\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x-1)[\ln (x-1)-1]\)

\(=5\ln 5-4\ln 4-1+4\ln 2-2=5\ln 5-4\ln 2-3\)

AH
Akai Haruma
Giáo viên
6 tháng 3 2017

Bài 2)

\(J=\int ^{1}_{0}x\ln (2x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (2x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2dx}{2x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)

Khi đó:

\(J=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2\ln (2x+1)}{2}-\int ^{1}_{0}\frac{x^2}{2x+1}dx\)\(=\frac{\ln 3}{2}-\frac{1}{4}\int ^{1}_{0}(2x-1+\frac{1}{2x+1})dx\)

\(=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2-x}{4}-\frac{1}{8}\int ^{1}_{0}\frac{d(2x+1)}{2x+1}=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\ln (2x+1)}{8}\)

\(=\frac{\ln 3}{2}-\frac{\ln 3}{8}=\frac{3\ln 3}{8}\)

1 tháng 4 2016

Đặt \(u=x^2e^x\Rightarrow du=\left(2x.e^x\right)dx=xe^x\left(2+x\right);dv=\frac{dx}{\left(x+2\right)^2}\Rightarrow v=-\frac{1}{x+2}\)

Vậy \(I=\int\limits^2_0\frac{x^2e^x}{\left(x+2\right)^2}=-\frac{x^2e^x}{x+2}|^2_0+\int\limits^2_0xe^xdx=-e^2+\left(xe^x-e\right)|^2=1_0\)

1 tháng 4 2016

Mình có cách khác, đổi biến số trước, sau lấy tích phân từng phần cũng ra

Đặt  \(t=x+2\Rightarrow\begin{cases}dt=dx,x=0\Rightarrow t=2,x=2\rightarrow t=4\\f\left(x\right)dx=\frac{\left(t-2\right)^2e^{t-2}}{t}.dt=\left(t+\frac{2}{t}-4\right)e^{t-2}dt\end{cases}\)

Suy ra : \(I=\int\limits^4_2te^{t-2}dt+\int\limits^4_2\frac{e^{t-2}}{t}dt-4\int\limits^4_2e^{t-2}dt=J+K+4L\left(1\right)\)

Tính các tích phân J, K, L ta cũng ra được kết quả giống bạn Dương 

18 tháng 4 2016

\(I=\int\limits^1_0\frac{x+1-1dx}{\left(x+1\right)^3}=\int\limits^1_0\frac{dx}{\left(x+1\right)^2}-\int\limits^1_0\frac{dx}{\left(x+1\right)^3}=x+1|^1_0+\frac{1}{2\left(x+1\right)^2}|^1_0=\frac{1}{8}\)

20 tháng 2 2021

Câu nào mình biết thì mình làm nha.

1) Đổi thành \(\dfrac{y^4}{4}+y^3-2y\) rồi thế số.KQ là \(\dfrac{-3}{4}\)

2) Biến đổi thành \(\dfrac{t^2}{2}+2\sqrt{t}+\dfrac{1}{t}\) và thế số.KQ là \(\dfrac{35}{4}\)

3) Biến đổi thành 2sinx + cos(2x)/2 và thế số.KQ là 1

 

27 tháng 4 2017

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

a)

Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)

\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)

\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)

b)

\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)

\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

c)

\(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).

Đặt \(x+1=t\)

\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)

\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)