Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đk: x \(\ne\)-2
Ta có: \(\frac{2}{x+2}-\frac{2x^2+16}{x^2+8}=\frac{5}{x^2-2x+4}\)
<=> \(\frac{2\left(x^2-2x+4\right)-\left(2x^2+16\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{5\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
<=> 2x2 - 4x + 8 - 2x2 - 16 = 5x + 10
<=> -4x - 8 = 5x + 10
<=> -4x - 5x = 10 + 8
<=> -9x = 18
<=> x = -2 (ktm)
=> pt vô nghiệm
b) Đk: x \(\ne\)2; x \(\ne\)-3
Ta có: \(\frac{1}{x-2}-\frac{6}{x+3}=\frac{5}{6-x^2-x}\)
<=> \(\frac{x+3}{\left(x-2\right)\left(x+3\right)}-\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{5}{\left(x-2\right)\left(x+3\right)}\)
<=> x + 3 - 6x + 12 = -5
<=> -5x = -5 - 15
<=> -5x = -20
<=> x = 4
vậy S = {4}
c) Đk: x \(\ne\)8; x \(\ne\)9; x \(\ne\)10; x \(\ne\)11
Ta có: \(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
<=> \(\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)
<=> \(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)
<=> \(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)
<=> x = 0 (vì \(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\ne0\)
Vậy S = {0}
Bài 1:
\(B=\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}+\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
\(=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-\left(0,625-0,5+\frac{5}{11}+\frac{5}{12}\right)}+\frac{3\left(0,5+\frac{1}{3}-0,25\right)}{5\left(0,5+\frac{1}{3}-0,25\right)}\)
\(=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-\left[5\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)\right]}+\frac{3}{5}\)
\(=\frac{-3}{5}+\frac{3}{5}\)
\(=0\)
Bài 2:
b) Giải:
Ta có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}=\frac{c^6}{d^6}=\frac{3a^6+c^6}{3b^6+d^6}\) (1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^6=\left(\frac{a+c}{b+d}\right)^6=\frac{a^6}{b^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{3a^6+c^6}{3b^6+d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(đpcm\right)\)
g) \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\left(\frac{x+2+98}{98}\right)+\left(\frac{x+4+96}{96}\right)=\left(\frac{x+6+94}{94}\right)+\left(\frac{x+8+92}{92}\right)\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0.\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=0-100\)
\(\Leftrightarrow x=-100.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-100\right\}.\)
h) \(\frac{x-12}{77}+\frac{x-11}{78}=\frac{x-74}{15}+\frac{x-73}{16}\)
\(\Leftrightarrow\left(\frac{x-12}{77}-1\right)+\left(\frac{x-11}{78}-1\right)=\left(\frac{x-74}{15}-1\right)+\left(\frac{x-73}{16}-1\right)\)
\(\Leftrightarrow\left(\frac{x-12-77}{77}\right)+\left(\frac{x-11-78}{78}\right)=\left(\frac{x-74-15}{15}\right)+\left(\frac{x-73-16}{16}\right)\)
\(\Leftrightarrow\frac{x-89}{77}+\frac{x-89}{78}=\frac{x-89}{15}+\frac{x-89}{16}\)
\(\Leftrightarrow\frac{x-89}{77}+\frac{x-89}{78}-\frac{x-89}{15}-\frac{x-89}{16}=0\)
\(\Leftrightarrow\left(x-89\right).\left(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\right)=0\)
Vì \(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\ne0.\)
\(\Leftrightarrow x-89=0\)
\(\Leftrightarrow x=0+89\)
\(\Leftrightarrow x=89.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{89\right\}.\)
Chúc bạn học tốt!
\(\frac{1+2.3^6}{2^3.3^6-2^3.5^3}-\frac{1+3^6}{8\left(9^3-125\right)}-\frac{5^3}{18^3-10^3}\)
\(=\frac{1+2.3^6}{2^3\left(3^6-5^5\right)}-\frac{1+3^6}{2^3\left[\left(3^2\right)^3-5^3\right]}-\frac{5^3}{\left(2.3^2\right)^3-\left(2.5\right)^3}\)
\(=\frac{1+2.3^6}{2^3\left(3^6-5^3\right)}-\frac{1+3^6}{2^3\left(3^6-5^3\right)}-\frac{5^3}{2^3\left(3^6-5^3\right)}\)
\(=\frac{\left(1+2.3^6\right)-\left(1+3^6\right)-5^3}{2^3\left(3^6-5^2\right)}\)
\(=\frac{3^6-5^3}{2^3\left(3^6-5^3\right)}\)
\(=\frac{1}{8}\)
\(25x^2y^4+30xy^2z+9z^2=\left(5xy^2\right)^2+2.5xy^2.3z+\left(3z\right)^2=\left(5xy^2+3z\right)^2\)
\(\frac{16}{9}x^2+4xyz^2+\frac{9}{4}y^2z^4=\left(\frac{4}{3}x\right)^2+2.\frac{4}{3}x.\frac{3}{2}yz^2+\left(\frac{3}{2}yz^2\right)^2=\left(\frac{4}{3}x+\frac{3}{2}yz^2\right)^2\)
\(\frac{9}{25}x^2+\frac{12}{35}xy+\frac{4}{49}y^2=\left(\frac{3}{5}x\right)^2+2.\frac{3}{5}x.\frac{2}{7}y+\left(\frac{2}{7}y\right)^2=\left(\frac{3}{5}x+\frac{2}{7}y\right)^2\)( tự thay vào tính nhé )
\(\frac{25}{16}u^4y^2+\frac{1}{5}u^2+y^3+\frac{4}{625}y^4=\left(\frac{5}{4}u^2y\right)^2+2.\frac{5}{4}u^2y.\frac{2}{25}.y^2+\left(\frac{2}{25}y^2\right)^2=\left(\frac{5}{4}u^2y+\frac{2}{25}y^2\right)^2\)( tự thay vào tính nhé )
Tham khảo nhé~
\(ĐKXĐ:x\ne3;x\ne5;x\ne4;x\ne6\)
\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
\(\Rightarrow\frac{x}{x-3}-\frac{x}{x-5}-\frac{x}{x-4}+\frac{x}{x-6}=0\)
\(\Rightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}=0\left(1\right)\end{cases}}\)
\(\left(1\right)\Rightarrow\frac{1}{x-3}+\frac{1}{x-6}=\frac{1}{x-5}+\frac{1}{x-4}\)
\(\Rightarrow\frac{2x-9}{\left(x-3\right)\left(x-6\right)}=\frac{2x-9}{\left(x-5\right)\left(x-4\right)}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{2}\left(tm\right)\\\left(x-3\right)\left(x-6\right)=\left(x-5\right)\left(x-4\right)\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow x^2-9x+18=x^2-9x+20\)
\(\Leftrightarrow0=2\left(L\right)\)
Vậy pt có 2 nghiệm \(\left\{0;\frac{9}{2}\right\}\)
\( a)5\left( {x - 3} \right) - 4 = 2\left( {x - 1} \right) + 7\\ \Leftrightarrow 5x - 15 - 4 = 2x - 2 + 7\\ \Leftrightarrow 5x - 19 = 2x + 5\\ \Leftrightarrow 5x - 2x = 5 + 19\\ \Leftrightarrow 3x = 24\\ \Leftrightarrow x = 8\\ b)\dfrac{{8x - 3}}{4} - \dfrac{{3x - 2}}{2} = \dfrac{{2x - 1}}{2} + \dfrac{{x + 3}}{4}\\ \Leftrightarrow 8x - 3 - \left( {3x - 2} \right).2 = \left( {2x - 1} \right).2 + x + 3\\ \Leftrightarrow 8x - 3 - 6x + 4 = 4x - 2 + x + 3\\ \Leftrightarrow 2x + 1 = 5x + 1\\ \Leftrightarrow 2x - 5x = 0\\ \Leftrightarrow - 3x = 0\\ \Leftrightarrow x = 0 \)
\( c)\dfrac{{2\left( {x + 5} \right)}}{3} + \dfrac{{x + 12}}{2} - \dfrac{{5\left( {x - 2} \right)}}{6} = \dfrac{x}{3} + 11\\ \Leftrightarrow 4\left( {x + 5} \right) + 3\left( {x + 12} \right) - \left[ {5\left( {x - 2} \right)} \right] = 2x + 66\\ \Leftrightarrow 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66\\ \Leftrightarrow 2x + 66 = 2x + 66\\ \Leftrightarrow 0x = 0\left( {VSN} \right)\\ \Leftrightarrow x = 0 \)
\(d)\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\\ \Leftrightarrow \dfrac{x-10}{1994}-1+\dfrac{x-8}{1996}-1+\dfrac{x-6}{1998}-1+\dfrac{x-4}{2000}-1+\dfrac{x-2}{2002}-1=\dfrac{x-2002}{2}-1+\dfrac{x-2000}{4}-1+\dfrac{x-1998}{6}-1+\dfrac{x-1996}{8}-1+\dfrac{x-1994}{10}-1\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}+\dfrac{x-2004}{8}+\dfrac{x-2004}{10}\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}-\dfrac{x-2004}{8}-\dfrac{x-2004}{10}=0\\ \Leftrightarrow \left(x-2004\right)\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}+\dfrac{1}{2000}+\dfrac{1}{2002}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}=0\right)\\ \Leftrightarrow x-2004=0\\ \Leftrightarrow x=2004\)
\(y=\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
\(y=\frac{2^{12}.3^{10}+2^9.3^9.120}{2^{12}.3^{12}+2^{11}.3^{11}}\)
\(y=\frac{2^9.3^9\left(2^3.3+120\right)}{2^{11}.3^{11}\left(2.3+1\right)}\)
\(y=\frac{6^9\left(2^3.3+120\right)}{6^{11}.7}\)
\(y=\frac{2^3.3+120}{6^2.7}\)
\(y=\frac{144}{252}\)
\(y=\frac{4}{7}\)