K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 2 2020

Casio cho kết quả \(\frac{5+\sqrt{21}}{2}\)

Bạn tự lập phương rồi tách ngược là được

14 tháng 10 2016

\(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\Leftrightarrow a^3=110+3.\sqrt[3]{55^2-3024}.a\Leftrightarrow a^3=3a+110\)

\(\Rightarrow a^3-3a-110=0\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\Leftrightarrow a=5\)(vì a2+5a+22>0)

Thay a vào P để tính.

23 tháng 3 2020

có ai tên cuongkim ở hoidap 247 ko

19 tháng 7 2018

Tu \(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\)

\(\Leftrightarrow a^3=110+3\sqrt[3]{55+\sqrt{3024}}\cdot\sqrt[3]{55-\sqrt{3024}}\left(\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\right)\)

\(\Leftrightarrow a^3-3a-110=0\)

\(\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\)(de thay a^2+5a+22>0)

\(\Leftrightarrow a=5\Rightarrow P=\frac{7}{3}\)

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bài 1:

$a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}$

$\Rightarrow a^3=110+3\sqrt[3]{(55+\sqrt{3024})(55-\sqrt{3024})}a$

$\Leftrightarrow a^3=110+3a$

$\Leftrightarrow a^3-3a-110=0$

$\Leftrightarrow a^3-5a^2+5a^2-25a+22a-110=0$

$\Leftrightarrow a^2(a-5)+5a(a-5)+22(a-5)=0$

$\Leftrightarrow (a-5)(a^2+5a+22)=0$

Dễ thấy $a^2+5a+22>0\Rightarrow a-5=0\Rightarrow a=5$

Vậy........

$a=

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bài 2:

Bạn xem tại đây:

Câu hỏi của Nguyễn Huệ Lam - Toán lớp 9 | Học trực tuyến

Hoặc có thể dùng cách chứng minh bằng Vi-et bậc 3 nhưng việc dùng Vi-et bậc 3 có vẻ không phổ biến lắm trong lời giải bài THCS

6 tháng 9 2020

Không dùng máy tính thì dùng bảng :))

27 tháng 6 2017

1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)

\(=7-2\sqrt{4\sqrt{7}}\)

29 tháng 5 2018

cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với

28 tháng 9 2015

\(\sqrt{a}-\sqrt{b}=\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}=\sqrt{11}-\sqrt{5}\Rightarrow a-b=6\)