Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}+\frac{1}{1}=2\)
\(\Rightarrow\)\(A< 2\left(đpcm\right)\)
chúc bạn học tốt!!!
Bài 6 :
2S = 6 + 3 + 3/2 + ... + 3/2^8
2S = 6 - 3/2^9 + S
S = 6 - 3/2^9
Vậy S = 6 - 3/2^9
Bài 7 :
Ta có :
A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2
=) A < 2
Vậy A < 2
Bài 8 :
Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )
=) A < B
Vậy A < B
Bài 9:
Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)
=) A > B
Vậy A > B
b, \(\frac{2^{10}\left(13+65\right)}{2^8.104}\)
=\(\frac{2^2.78}{104}\)=\(\frac{312}{104}\)=3
Ta có : \(S=\frac{989898.89-898989.98}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=\frac{98\cdot10101\cdot89-89\cdot10101\cdot98}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=\frac{10101\cdot\left(98\cdot89-89\cdot98\right)}{2^3+3^4+4^5+....+2014^{2015}}\)
\(=\frac{10101\cdot0}{2^3+3^4+4^5+....+2014^{2015}}=0\)
Vậy \(S=0\)
\(S=\frac{989898.89-898989.98}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=\frac{98\cdot10101\cdot89-89\cdot10101\cdot98}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=\frac{10101\cdot\left(98\cdot89-89\cdot98\right)}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=\frac{10101\cdot0}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=0\)