Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) gt \(\Leftrightarrow\) s-\(10\times\left(\frac{2}{11\times13}+\frac{2}{13\times15}+...+\frac{2}{53\times55}\right)=\frac{3}{11}\)
\(\Leftrightarrow s-10\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow S-10\times\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow S=1\)
câu b hình như sai đề
Phải là \(\frac{1}{36}\) chứ ko phải \(\frac{1}{39}\)
a. Cho \(x=1\) ta được:
\(\left(1+1+2\right)^{10}=a_0+a_1+a_2+...+a_{20}\)
\(\Rightarrow S_1=4^{10}\)
b. Cho \(x=2\) ta được:
\(\left(1+2+8\right)^{10}=a_0+a_1.2+a_2.2^2+...+a_{20}.2^{20}\)
\(\Rightarrow S_2=11^{10}\)
c.
\(\left(1+x+2x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x+2x^2\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i.2^ix^{i+k}\)
Số hạng chứa \(\Rightarrow\left\{{}\begin{matrix}i+k=17\\0\le i\le k\le10\end{matrix}\right.\)
\(\Rightarrow\left(i;k\right)=\left(7;10\right);\left(8;9\right)\)
\(\Rightarrow a_{17}=C_{10}^{10}C_{10}^7.2^7+C_{10}^9.C_9^8.2^8=...\)
ta có : \(sin\left(3x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{3}}{2}\Leftrightarrow sin\left(3x-\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{4}=\dfrac{\pi}{3}+k2\pi\\3x-\dfrac{\pi}{4}=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7\pi}{36}+\dfrac{2k\pi}{3}\\x=\dfrac{11\pi}{36}+\dfrac{2k\pi}{3}\end{matrix}\right.\)
giả sử \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7\pi}{36}+\dfrac{2k\pi}{3}< 0\\\dfrac{11\pi}{36}+\dfrac{2k\pi}{3}< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}k< -\dfrac{7}{24}\\k< -\dfrac{11}{24}\end{matrix}\right.\) \(\Rightarrow k=-1\) là số lớn nhất ở đây
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-17\pi}{36}\\x=\dfrac{-13\pi}{36}\end{matrix}\right.\) \(\Rightarrow x^-_{max}=\dfrac{-13\pi}{36}\)
giả sử \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7\pi}{36}+\dfrac{2k\pi}{3}>0\\\dfrac{11\pi}{36}+\dfrac{2k\pi}{3}>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}k>-\dfrac{7}{24}\\k>-\dfrac{11}{24}\end{matrix}\right.\) \(\Rightarrow k=0\) là số nhỏ nhất ở đây
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7\pi}{36}\\x=\dfrac{11\pi}{36}\end{matrix}\right.\) \(\Rightarrow x^+_{min}=\dfrac{7\pi}{36}\)
\(\Rightarrow\) tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của pt là
\(\dfrac{-13\pi}{36}+\dfrac{7\pi}{36}=\dfrac{-\pi}{6}\)
đổi ra độ ta có : \(\dfrac{-\pi}{6}=-30^o\) \(\Rightarrow\) (B)
Chọn 3 điểm trong (n+10) điểm
chọn 3 điểm trong 10 điểm
chọn 3 điểm trong n điểm
=> số tam giác tạo thành là : \(C_{n+10}^3-C_{10}^3-C_{n}^3=2800\)
=> \(\frac{(n+8)(n+9)(n+10)}{3!}-120-\frac{(n-2)(n-1)n}{3!}=2800\)
=> n=20 => chọn B nha