\(M=2^{2010}-2^{2009}-2^{2008}-...-2-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

Câu hỏi của Hatsune Miku - Toán lớp 7 | Học trực tuyến

\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)

\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)

\(=\frac{1}{5}+\frac{2}{3}\)

\(=\frac{13}{15}\)

8 tháng 8 2019

Đặt \(A=2^{2009}+2^{2008}+...+2^1+2^0\)

Ta có : \(2A=2^{2010}+2^{2009}+...+2^2+2^1\)

\(\Rightarrow2A-A=2^{2010}-2^0\Rightarrow A=2^{2010}-1\)

Do đó : \(M=2^{2010}-A=2^{2010}-\left[2^{2010}-1\right]=1\)

8 tháng 8 2019

\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(2^{2010}-M=2^{2009}+2^{2008}+...+2+1\)

\(2\left(2^{2010}-M\right)=2\left(2^{2009}+2^{2008}+...+2+1\right)\)

\(2\left(2^{2010}-M\right)=2^{2010}+2^{2009}+...+2^2+2\)

\(2\left(2^{2010}-M\right)-M=\left(2^{2010}+2^{2009}+...+4+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)

\(2^{2010}-M=2^{2010}+2^{2009}+...+4+2-2^{2009}-2^{2008}-...-2-1\)

\(2^{2010}-M=2^{2010}-1\)

=> M = 1

20 tháng 10 2018

\(M=2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\)

\(-M=-\left(2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\right)\)

\(-M=2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\)

\(-2M=2.\left(2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(-2M=2^{2011}+2^{2010}+2^{2009}+...+2^2+2^1\)

\(-M=2^{2011}+2^{2010}+...+2^2+2^1-\left(2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(-M=2^{2011}-1=>M=-2^{2011}+1\)

20 tháng 10 2018

tại sao lại có dấu ''-'' vậy bạn mình không hiểu lắm.

21 tháng 3 2016

Theo qui luật; H = 1.

=> 2010H = 20101 = 2010.

21 tháng 3 2016

bang 2010^1=2010

10 tháng 4 2017

Đặt \(A=2^{2009}+2^{2008}+...+2+1\)

\(\Rightarrow2A=2^{2010}+2^{2009}+...+2^2+1\)

\(\Rightarrow2A-A=\left(2^{2010}+2^{2009}+...+2^2+1\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)

\(\Rightarrow A=2^{2010}-1\)

Ta có: \(M=2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)

\(=2^{2010}-\left(2^{2010}-1\right)\)

\(=2^{2010}-2^{2010}+1=1\)

Vậy M = 1

31 tháng 5 2017

Đặt \(A=2^{2009}+2^{2008}+...+2+2^0\)

\(=1+2+...+2^{2008}+2^{2009}\)

\(\Rightarrow2A=2+2^2+...+2^{2010}\)

\(\Rightarrow2A-A=\left(2+2^2+...+2^{2010}\right)-\left(1+2+...+2^{2009}\right)\)

\(\Rightarrow A=2^{2010}-1\)

\(\Rightarrow M=2^{2010}-\left(2^{2010}-1\right)\)

\(=2^{2010}-2^{2010}+1=1\)

Vậy M = 1

5 tháng 7 2017

\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)

Gọi \(N=2^{2009}+2^{2008}+...+2^1+2^0\)

\(2N=2^{2010}+2^{2009}+...+2^2+2^1\\ 2N-N=\left(2^{2010}+2^{2009}+...+2^2+2^1\right)-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\\ N=2^{2010}-2^0\\ N=2^{2010}-1\)

Thay vào ta được

\(M=2^{2010}-\left(2^{2010}-1\right)\\ M=2^{2010}-2^{2010}+1\\ M=1\)

Vậy \(M=1\)

Ta có :

\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^0\right)\)

Đặt A=22009+22008+..+20

\(A=2^{2009}+2^{2008}+...+2^0\\ 2A=2^{2010}+2^{2009}+...+2^1\\ \Rightarrow2A-A=A=2^{2010}-2^0\\ \Rightarrow M=2^{2010}-\left(2^{2010}-2^0\right)\\ M=2^{2010}-2^{2010}+1\\ \Rightarrow M=1\)

Chúc bạn học tốt!vui

17 tháng 3 2018

Ta có: \(H=2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)

Đặt \(A=2^{2009}+2^{2008}+...+2+1\)

\(\Rightarrow2A=2^{20010}+2^{2009}+...+2^2+2\)

\(\Rightarrow2A-A=\left(2^{20010}+2^{2009}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)\(\Rightarrow A=\left(2^{2010}-1\right)+\left(2^{2009}-2^{2009}\right)+\left(2^{2008}-2^{2008}\right)+...+\left(2-2\right)\)\(\Rightarrow A=2001-1\)

\(\Rightarrow H=2^{2010}-\left(2^{2010}-1\right)\)

\(\Rightarrow H=2^{2010}-2^{2010}+1=1\)

Thay \(H=1\) vào biểu thức \(2010^H\)

\(\Rightarrow2010^H=2010^1=1\)

Vậy \(2010^H=1\)

27 tháng 3 2018

\(2010^1=1\) ?????

#WTF???