Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a+b=9
=>(a+b)^2=81
=>(â-b)^2+4ab=81
=>(a-b)^2=80-4.20
=>(a-b)^2=80-81
=>(a-b)^2=(-1)
mà a<b nên a-b<0
=> a-b = -1
vậy (a-b)^2011 =(-1) ^ 2011=(-1)
Ta có : \(a+b=9\Leftrightarrow a^2+b^2+2ab=81\Rightarrow a^2+b^2+40=81\)
\(\Rightarrow a^2+b^2=41\Rightarrow a^2+b^2-2ab=41-40=1\)
\(\Leftrightarrow\left(a-b\right)^2=1\Rightarrow a-b=-1\left(a< b\right)\)
\(\Rightarrow\left(a-b\right)^{2011}=-1^{2011}=-1\)
Ta có: a + b = 9
=> (a + b)2 = 81
=> (a - b)2 + 4ab = 81
=> (a - b)2 = 81 - 4 . 20
=> (a - b)2 = 80 - 81
=> a - b = 1
= -1
Mà a > b nên a - b < 0 = a - b = -1
Vậy: (a - b)2015 = (-1)2015 = -1
Ta có\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab\)
\(=9^2-4.20\)
\(=1\)
Mà a<b
\(\Rightarrow a-b=-1\)
\(\Rightarrow\left(a-b\right)^{2015}=\left(-1\right)^{2015}=-1\)
\(\hept{\begin{cases}a+b=9\\ab=20\end{cases}}\Leftrightarrow\hept{\begin{cases}a=9-b\\ab=20\end{cases}}\)
\(\Leftrightarrow\left(9-b\right)b=20\)
\(\Leftrightarrow9b-b^2-20=0\)
\(\Leftrightarrow5b-20+4b-b^2=0\)
\(\Leftrightarrow5\left(b-4\right)-b\left(b-4\right)=0\)
\(\Leftrightarrow\left(5-b\right)\left(b-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5-b=0\\b-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}b=5\\b=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=9-b=9-5=4\\a=9-b=9-4=5\end{cases}}\)
- Nếu b=5; a=4 thì A=(a-b)2015=(4-5)2015=-1
- Nếu b=4; a=5 thì A=(a-b)2015=(5-a)2015=1
@ giải phức tạp thế ai bắt tính a, b đâu
(a+b)=9
(a+b)^2=9^2
(a-b)^2=(a+b)^2-4ab=1
Ia-bI=1 a<b=> (a-b)=-1
=> (a-b)^2015=-1
Vì a < b, a + b = 7, a . b = 12 nên a = 3 , b = 4
Khi đó : \(\left(a-b\right)^{2009}=\left(3-4\right)^{2009}=-1\)
a) mk chỉnh đề:
Chứng minh: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\) (1)
hoặc \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\) (2)
BÀI LÀM
TH1:
\(VP=\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2=VP\) (đpcm)
TH2:
\(VP=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2=VT\) (đpcm)
b) \(a+b=9\)\(\Rightarrow\)\(a=9-b\)
Ta có: \(ab=20\)\(\Rightarrow\)\(\left(9-b\right).b=20\)
\(\Leftrightarrow\)\(b^2-9b+20=0\)
\(\Leftrightarrow\)\(\left(b-4\right)\left(b-5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}b=4\\b=5\end{cases}}\)
Nếu \(b=4\)thì: \(a=5\)\(\Rightarrow\)\(\left(a-b\right)^{2011}=\left(5-4\right)^{2011}=1\)
Nếu \(b=5\)thì \(a=4\)\(\Rightarrow\)\(\left(a-b\right)^{2011}=\left(4-5\right)^{2011}=-1\)
a, sửa đề CM: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(VP=\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2=VT\left(đpcm\right)\)
b, \(a+b=9\Leftrightarrow\left(a+b\right)^2=81\Leftrightarrow\left(a-b\right)^2+4ab=81\Leftrightarrow\left(a-b\right)^2=81-4.20=1\Leftrightarrow a-b=\pm1\)
Với \(a-b=1\Rightarrow\left(a-b\right)^{2011}=1\)
Với \(a-b=-1\Rightarrow\left(a-b\right)^{2011}=-1\)
ta có: a+b = 9
=> (a+b)2 = 81
a2 + 2ab + b2 = 81
=> a2 - 2ab + b2 + 4ab = 81
(a-b)2 + 4ab = 81
(a-b)2 + 80= 81
(a-b)2 = 1 = 12 = (-1)2
=> a-b = 1 hoặc a-b = -1
=> (a-b)2015 = 12015 = 1
(a-b)2015 = (-1)2015 = -1
KL:...
a + b = 9 => ( a + b )2 = 81
=> a2 + 2ab + b2 = 81
=> a2 + 2.20 + b2 = 81
=> a2 + b2 + 40 = 81
=> a2 + b2 = 41
Xét ( a - b )2 = a2 - 2ab + b2 = ( a2 + b2 ) - 2 . 20 = 41 - 40 = 1
=> ( a - b )2 = 1
=> a - b = { 1; -1 }
mà a > b => a - b = 1
=> ( a - b )2015 = 12015 = 1
Vậy,......