K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 12 2016

Giải như sau: Cho biểu thức cần tính là $A$

Đặt \(\begin{cases}u=x\\dv=\frac{\cos x}{\sin^3x}dx\end{cases}\) \(\Rightarrow\) \(\begin{cases}du=dx\\v=\int\frac{\cos xdx}{\sin^3x}=\int\end{cases}\frac{d\left(\sin x\right)}{\sin^3x}=\frac{-1}{2\sin^2x}}\)

Áp dụng quy tắc nguyên hàm từng phần:

\(A=-\frac{x}{2\sin^2x}+\int\frac{1}{2\sin^2x}dx=\frac{-x}{2\sin^2x}-\frac{1}{2}\int d\left(\cot x\right)=\frac{-x}{2\sin^2x}-\frac{\cot x}{2}\)

 

AH
Akai Haruma
Giáo viên
15 tháng 12 2016

Viết lại chỗ công thức lỗi hiuhiu:

Suy ra \(d\left(u\right)=dx\)\(v=\int\frac{\cos xdx}{\sin^3x}=\int\frac{d\left(\sin x\right)}{\sin^3x}=-\frac{1}{2\sin^2x}\)

GV
4 tháng 5 2017

a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)

\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)

\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)

\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)

Vậy:

\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)

\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)

25 tháng 12 2016

1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)

\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)

Thay x vào ta có...

25 tháng 12 2016

2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)

\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)

Ta có:

\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)

\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)

Thay x vào, ta có....

 

19 tháng 3 2016

a) Áp dụng  đồng nhất thức  \(\cos^2x+\sin^2x=1\)

ta có : \(\int\frac{1}{\cos^2x.\sin^2x}dx=\int\frac{\cos^2x+\sin^2x}{\cos^2x.\sin^2x}dx=\int\frac{dx}{\sin^2x}+\int\frac{dx}{\cos^2x}\)

                                   \(=-\cot x+\tan x+C\)

19 tháng 3 2016

b) Khai triển biểu thức dưới dấu nguyên hàm ta thu được :

\(\int\left(\tan x+\cot x\right)^2dx=\int\left(\tan^2x+2+\cot^2x\right)dx\)

                                 \(=\int\left[\left(\tan^2x+1\right)+\left(\cot^2x+1\right)\right]dx\)

                                 \(=\int\frac{dx}{\cos^2x}+\int\frac{dx}{\sin^2x}\)

                                 \(=\tan x-\cot x+C\)

22 tháng 3 2016

a) \(I_1=\int\frac{dx}{2\sin x\cos x}=\frac{1}{2}\int\frac{\cos x}{\sin x}.\frac{dx}{\cos^2x}\)

Đặt \(\tan x=t\)

        \(=\frac{1}{2}\int\frac{dt}{t}=\frac{1}{2}\ln\left|t\right|+C=\frac{1}{2}\ln\left|\tan x\right|+C\) 

b) \(I_2=\int\frac{\sin^4x}{\cos^4x}.\frac{1}{\cos^2x}.\frac{dx}{\cos^2x}\) 

Đặt \(t=\tan x\)

         \(=\int t^4\left(1+t^2\right)dt\)

         \(=\int t^4dt+\int t^6dt=\frac{t^5}{5}+\frac{t^7}{7}+C\)

         \(=\frac{\tan^5x}{5}+\frac{\tan^7x}{7}+C\)

c) \(I_3=\int\tan^3xdx\)  đặt \(t=\tan x\) 

        \(=\int\frac{t^3}{1+t^2}dt=\int\left(t-\frac{t}{1+t^2}\right)dt\)

        \(=\frac{t^2}{2}-\frac{1}{2}\ln\left(1+t^2\right)+C\)

       \(=\frac{1}{2}\tan^2x+\ln\left|\cos x\right|+C\)

d) \(\int\frac{dx}{\sin^4x}=\int\frac{1}{\sin^2x}.\frac{1}{\sin^2x}dx=-\int\left(1+\cot^2x\right)d\left(\cot x\right)\)

                                               \(=-\cot x-\frac{1}{3}\cot^3x+C\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2017

Lời giải:

Câu 1:

\(A=\int\frac{dx}{1+\sin x}=\int \frac{(1-\sin x)dx}{1-\sin^2 x}=\int\frac{(1-\sin x)dx}{\cos ^2x}=\int\frac{dx}{\cos ^2x}-\int\frac{\sin x dx}{\cos^2 x}\)

\(\Leftrightarrow A=\int d(\tan x)+\int\frac{d(\cos x)}{\cos^2 x}=\tan x-\frac{1}{\cos x}+c\)

Câu 2:

\(B=\int \sin ^4 xdx=\int \sin^2 x(1-\cos ^2x)dx=\int \sin^2 xdx-\int \sin^2 x\cos^2xdx\)

Ta thấy \(\int \sin^2xdx=\frac{1}{2}\int (1-\cos 2x)dx=\frac{x}{2}-\frac{\sin 2x}{4}+c\)

\(\int \sin ^2x\cos^2xdx=\frac{1}{4}\int \sin^22xdx=\frac{1}{8}\int (1-\cos4x)dx=\frac{x}{8}-\frac{\sin 4x}{32}+c\)

\(\Rightarrow B=\frac{3}{8}-\frac{\sin 2x}{4}+\frac{\sin 4x}{32}+c\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2017

Câu 3:

\(C=\int (\sin ^6 x+\cos^6 x)dx=\int (\sin^2x+\cos^2x)[\sin^4x-\sin^2x\cos^2x+\cos^4x)dx\)

\(\Leftrightarrow C=\int [(\sin^2x+\cos^2x)^2-3\sin^2x\cos^2x]dx\)

\(\Leftrightarrow C=\int dx-\frac{3}{4}\int\sin^22xdx=\int dx-\frac{3}{8}\int (1-\cos 4x)dx\)

\(\Leftrightarrow C=x-\frac{3x}{8}+\frac{3\sin 4x}{32}+c=\frac{5x}{8}+\frac{3\sin 4x}{32}+c\)

20 tháng 1 2017

lm jup mk di m.n

11 tháng 4 2017

Giải bài 4 trang 126 sgk Giải tích 12 | Để học tốt Toán 12