Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{1}=4\Leftrightarrow5-1=4\)(đúng)
Vậy \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)(đpcm)
\(M=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{2-6\sqrt{2}+9}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{6}}\)
\(=\sqrt{16+32\sqrt{6}}\)
a)\(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+7\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)
b)\(\left(7+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(7+\sqrt{14}\right)\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=\sqrt{7}\left(7-2\right)=5\sqrt{7}\)
a) \(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\sqrt{2}\)
Biến đổi vế trái :
VT = \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
\(=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{4-2\sqrt{3}}}=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\left|\sqrt{3}+1\right|}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\left|\sqrt{3}-1\right|}\)
\(=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{3}+1}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{3}+1}=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{\sqrt{3}+3}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{3-\sqrt{3}}=\frac{\sqrt{2}\left(2+\sqrt{3}\right)\left(\sqrt{3}-3\right)+\sqrt{2}\left(2-\sqrt{3}\right)\left(\sqrt{3}+3\right)}{\left(\sqrt{3}+3\right)\left(3-\sqrt{3}\right)}\)
\(=\frac{\sqrt{2}\left(6-2\sqrt{3}+3\sqrt{3}-3+6+2\sqrt{3}-3\sqrt{3}-3\right)}{9-3}=\frac{6\sqrt{2}}{6}=\sqrt{2}=VP\left(đpcm\right)\)
b) \(B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=8\)
Biến đổi vế trái :
VT = \(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=\sqrt{5+\sqrt{21}}\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5+\sqrt{21}}\sqrt{5-\sqrt{21}}\)
\(=\sqrt{2}\sqrt{5+\sqrt{21}}\left(\sqrt{7}-\sqrt{3}\right)\sqrt{25-21}=\sqrt{10+2\sqrt{21}}\left(\sqrt{7}-\sqrt{3}\right)\sqrt{4}=\left|\sqrt{7}+\sqrt{3}\right|\left(\sqrt{7}-\sqrt{3}\right)2\)
\(=\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)2=\left(7-3\right)2=4.2=8=VP\left(đpcm\right)\)
Bài 1:
a/ \(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}\)
\(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{4}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{4}}=\frac{5+\sqrt{21}}{2}+\frac{5-\sqrt{21}}{2}\)
\(=\frac{10}{2}=5\)
b/ \(=\left(2-\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)
\(=\left(2-\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)
\(=\left(2-\sqrt{3}\right)\sqrt{2+4\sqrt{6}}\)
Bạn coi lại đề, tới đây ko rút gọn được nữa nên chắc bạn ghi đề nhầm ở chỗ nào đó
c/ \(=\frac{5\left(\sqrt{3}+\sqrt{2}\right)\left(5-\sqrt{24}\right)}{5\left(\sqrt{3}-\sqrt{2}\right)}=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-\sqrt{24}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\left(5+2\sqrt{6}\right)\left(5-\sqrt{24}\right)=\left(5+\sqrt{24}\right)\left(5-\sqrt{24}\right)=1\)
d/ Nhân cả tử và mẫu của từng phân số với liên hợp của mẫu, mẫu số sẽ thành 1 hết:
\(=\frac{\sqrt{25}-\sqrt{24}}{\left(\sqrt{25}+\sqrt{24}\right)\left(\sqrt{25}-\sqrt{24}\right)}+\frac{\sqrt{24}-\sqrt{23}}{\left(\sqrt{24}+\sqrt{23}\right)\left(\sqrt{24}-\sqrt{23}\right)}+...+\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)
\(=\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-1\)
\(=\sqrt{25}-1=5-1=4\)
1. Đặt A =\(\sqrt{\frac{129}{16}+\sqrt{2}}\)
\(\sqrt{16}\)A = \(\sqrt{129+16\sqrt{2}}\)
4A = \(\sqrt{\left(8\sqrt{2}+1\right)^2}\)
4A = \(8\sqrt{2}+1\)
⇒ A = \(\frac{\text{}8\sqrt{2}+1}{4}\)= \(2\sqrt{2}\) + \(\frac{1}{4}\)
2. Đặt B = \(\sqrt{\frac{289+4\sqrt{72}}{16}}\)
\(\sqrt{16}\)B = \(\sqrt{289+24\sqrt{2}}\)
4B = \(\sqrt{\left(12\sqrt{2}+1\right)^2}\)
4B = \(12\sqrt{2}+1\)
⇒ B = \(\frac{12\sqrt{2}+1}{4}\)= \(3\sqrt{2}+\frac{1}{4}\)
3. \(\sqrt{2-\sqrt{3}}\). \(\left(\sqrt{6}+\sqrt{2}\right)\)
= \(\sqrt{2-\sqrt{3}}\). \(\sqrt{2}.\left(\sqrt{3}+1\right)\)
= \(\sqrt{4-2\sqrt{3}}\) . \(\left(\sqrt{3}+1\right)\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}\) . \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}-1\right)\). \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}\right)^2\) - 12
= 3 - 1
= 2
4. \(\left(\sqrt{21}+7\right)\). \(\sqrt{10-2\sqrt{21}}\)
= \(\left(\sqrt{21}+7\right)\) . \(\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
= \(\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\) . \(\left(\sqrt{7}-\sqrt{3}\right)\)
= \(\sqrt{7}\) \(\left[\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2\right]\)
= \(\sqrt{7}\) . (7 - 3)
= 4\(\sqrt{7}\)
5. \(2.\left(\sqrt{10}-\sqrt{2}\right)\). \(\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{4+\sqrt{5}-1}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{3+\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{12+4\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\left(\sqrt{10}+\sqrt{2}\right)\)
= \(\left(\sqrt{10}\right)^2-\left(\sqrt{2}\right)^2\)
= 10 - 2
= 8
6. \(\left(4\sqrt{2}+\sqrt{30}\right)\). \(\left(\sqrt{5}-\sqrt{3}\right)\). \(\sqrt{4-\sqrt{15}}\)
= \(\sqrt{2}\)\(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{4-\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{8-2\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)^2\)
= \(\left(4+\sqrt{15}\right)\). \(\left(8-2\sqrt{15}\right)\)
= 32 - \(8\sqrt{15}\) + \(8\sqrt{15}\) - 30
= 2
7. \(\left(7-\sqrt{14}\right)\) . \(\sqrt{9-2\sqrt{14}}\)
= \(\sqrt{7}\) \(\left(\sqrt{7}-\sqrt{2}\right)\). \(\left(\sqrt{7}-\sqrt{2}\right)\)
= \(\sqrt{7}\). \(\left(\sqrt{7}-\sqrt{2}\right)^2\)
= \(\sqrt{7}\) . \(\left(9-2\sqrt{14}\right)\)
= 9\(\sqrt{7}\) - 14\(\sqrt{2}\)
TICK MÌNH NHA!
bằng 3,741657387
k mk nha
#hoktot#
1 nhóm người chơi đấu cờ với nhau , người nào cx đáu với người khác trong nhóm . hỏi có bao nhiêu người. biết rằng có tất cả 15 ván cờ