K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

\(\frac{2005a}{ab+2005a+2005}+\frac{b}{bc+b+2005}+\frac{c}{ac+c+1}\)

\(=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)(vì abc=2005)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+1+c}=1\)

5 tháng 12 2016

Thau abc = 2005 vào đề bài ta có:

N = abc.a/ab+abc.a+abc + b/bc+b+abc + c/ac+c+1

N = a^2bc/ab(1+ac+c) + b/b(c+1+ac) + c/ac+c+1

N = ac/1+ac+c + 1/(c+1+ac) + c/ac+c+1

N = ac+1+c/ac+1+c = 1

=> đpcm

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Câu a:

\(a+b+c=0\Rightarrow a=-b-c\)

\(\Rightarrow a^2-b^2-c^2=(-b-c)^2-b^2-c^2=(b+c)^2-b^2-c^2\)

\(=2bc\)

\(\Rightarrow \frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{2bc}\). Hoàn toàn tương tự với những phân thức còn lại:

\(\Rightarrow M=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Lại có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)

\(=-c^3+3abc+c^3=3abc\)

\(\Rightarrow M=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

Vậy giá trị của biểu thức M không phụ thuộc vào biến $a,b,c$

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Câu b:

Thay $2005=abc$ ta có:

\(N=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{ab.ac}{ab(1+ac+c)}+\frac{b}{b(c+1+ac)}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{1+ac+c}=1\)

Vậy giá trị của biểu thức $N$ không phụ thuộc vào giá trị biến $a,b,c$

(đpcm)

1 tháng 7 2017

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)

Với \(a+b=0\)

Thì \(\hept{\begin{cases}\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\\\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\end{cases}}\)

Tương tự cho 2 trường hợp còn lại ta có ĐPCM

10 tháng 12 2019

Với \(a,b,c\ne0\); \(a+b+c\ne0\) , ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+abc+bc^2+c^2a=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+bc^2+c^2a=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Không mất tính tổng quát, ta lấy \(a=-b\), ta có:

\(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{\left(-b\right)^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}\)

\(=\frac{-1}{b^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\) (1)

Ta có:\(\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{\left(-b\right)^{2005}+b^{2005}+c^{2005}}\)

\(=\frac{1}{-b^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\) (2)

Từ (1), (2), suy ra \(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{a^{2005}+b^{2005}+c^{2005}}\)

10 tháng 12 2019

Cái chỗ không mất tính tổng quát đấy, là do a, b, c bình đẳng nhau.

23 tháng 1 2020

Từ giả thiết ta suy ra được:

\(\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\left(1\right)\)

Vì: \(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}>0\)

Từ \(\left(1\right)\Rightarrow x=y=z=0\)

Vậy từ trên ta suy ra \(x^{2005}+y^{2005}+z^{2005}=0\)

(Làm đại :D)

\(A=\frac{2004^3+1}{2004^2-2003}\)

\(A=\frac{2004+1}{1-2003}\)\(=\frac{2005}{-2002}\)

\(B=\frac{2005^3-1}{2005^2+2006}\)\(=\frac{2005-1}{1+2006}=\frac{2004}{2007}\)

\(\Rightarrow A>B\)

16 tháng 9 2018

\(A=\frac{2004^3+1}{2004^2-2003}\)

\(A=\frac{\left(2004+1\right)\left(2004^2-2004+1\right)}{2004^2-2003}\)

\(A=\frac{2005.\left(2004^2-2003\right)}{2004^2-2003}=2005\)

\(B=\frac{2005^3-1}{2005^2+2006}\)

\(B=\frac{\left(2005-1\right)\left(2005^2+2005+1\right)}{2005^2+2006}=\frac{2004.\left(2005^2+2006\right)}{2005^2+2006}=2004\)

Tham khảo nhé~

5 tháng 10 2019

Đúng là câu b sai, nhầm dấu đoạn đầu, phải là \(\frac{2006.2006-\left(2005.2006+2005\right)}{2006.\left(2007-2005\right)}\)

Phá ngoặc thì thành trừ nhưng cô của em bạn lại sót=> sai luôn cả tính chất bài toán.

P/s: Thử lại bằng casio là thấy rõ bạn đúng.

9 tháng 10 2019

Tư tưởng bảo thủ của bọn trẻ con và niềm tin mù quáng vào thầy cô đó bạn ^^