Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi \(n\inℕ^∗\) ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n-1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\)
Áp dụng đẳng thức trên ta có:
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)
\(=1-\frac{1}{\sqrt{2019}}\)
\(t\text{ổng}qu\text{át}:\frac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}=\frac{n\sqrt{n-1}-\left(n-1\right)\sqrt{n}}{n^2\left(n-1\right)-\left(n-1\right)^2n}\)
\(=\frac{n\sqrt{n-1}-\left(n-1\right)\sqrt{n}}{\left(n-1\right)n}\)
\(=\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\)
Thay vào A có
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)
\(=1-\frac{1}{\sqrt{2017}}\)
Ta có: \(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{k+1}}=\frac{\left(k+1\right)\sqrt{k}-k\sqrt{k+1}}{k\left(k+1\right)^2-k^2\left(k+1\right)}\)
\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k^3+2k^2+k-k^3-k^2}\)
\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k\left(k+1\right)}\)
\(=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Lần lượt thay k=1;2;...;2018 ta được:
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{1}-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
...
\(\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}=\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)
Cộng vế theo vế ta được:
\(C=1-\frac{1}{\sqrt{2019}}=...\)
\(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}-...-\frac{1}{\sqrt{2018}-\sqrt{2019}}\)
\(=\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{2019}-\sqrt{2018}}{2019-2018}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}\)
\(=\sqrt{2019}-\sqrt{2}\)
câu 1 tham khảo bn nhé
https://hoc24.vn/hoi-dap/question/841612.html
https://loga.vn/hoi-dap/tinh-can-1-1-2-2-1-3-2-can-1-1-2-2-1-3-2-tinh-sqrt-1-dfrac-1-2-2-dfrac-1-3-2-sqrt-1-dfrac-1-2-2-19838
1) Ta có: \(2020^2=\left(2019+1\right)^2=2019^2+2.2019+1.\)
\(\Rightarrow1+2019^2=2020^2-2.2019\)
\(\Rightarrow M=\sqrt{1+2019^2+\frac{2019^2}{2020^2}}+\frac{2019}{2020}=\sqrt{2020^2-2.2019+\frac{2019^2}{2020^2}}+\frac{2019}{2020}\)
\(=\sqrt{2020^2-2.2020.\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2}+\frac{2019}{2020}\)
\(=\sqrt{\left(2020-\frac{2019}{2020}\right)^2}+\frac{2019}{2020}=2020-\frac{2019}{2020}+\frac{2019}{2020}\)
\(=2020\)
Vậy M=2020.
2) Xét : \(k\in N;k\ge2\)ta có:
\(\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{\left(k-1\right)k}-\frac{2}{k}\)
\(=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{k-1}+\frac{2}{k}-\frac{2}{k}\)
\(\Rightarrow\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)
\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}+\frac{1}{k}\)
Cho \(k=3,4,...,2020.\)Ta có:
\(N=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2019^2}+\frac{1}{2020^2}}\)
\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2018}-\frac{1}{2019}\right)+\left(1+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=2018+\frac{1}{2}-\frac{1}{2020}=2018\frac{1009}{2020}\)
Vậy \(N=2018\frac{1009}{2020}.\)
Chứng minh: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) với a+b+c=0
Sau đó thay vào B tính ra
Số không đẹp lắm đâu