tính \(B=\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{10}}+......+\dfrac{1}{\sqrt{220}+\sqrt{225}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không
a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=-2
b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)
c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)
\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)
C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)
C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{\left(\sqrt{20}+1\right)^2}}}}{\sqrt{10}-\sqrt{2}}\)
C = \(\dfrac{2\sqrt{4-\sqrt{6+\sqrt{20}}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{4-\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{10}-\sqrt{2}}\)
C = \(\dfrac{2\sqrt{3-\sqrt{5}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{3-\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)}{10-2}\)
C = \(\dfrac{2\sqrt{30-10\sqrt{5}}+2\sqrt{6-2\sqrt{5}}}{8}\)
C = \(\dfrac{2\sqrt{\left(5-\sqrt{5}\right)^2}+2\sqrt{\left(\sqrt{5}-1\right)^2}}{8}\)
C = \(\dfrac{2\left(5-\sqrt{5}\right)+2\left(\sqrt{5}-1\right)}{8}\)
C = \(\dfrac{10-2\sqrt{5}+2\sqrt{5}-2}{8}\) = \(\dfrac{8}{8}\) = \(1\)
D = \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
D = \(\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}\)
D = \(7-3\sqrt{5}-\left(7+3\sqrt{5}\right)\) = \(7-3\sqrt{5}-7-3\sqrt{5}\)
D = \(-6\sqrt{5}\)
A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\) = \(\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{5}+1}\) = \(\sqrt{1}=1\)
\(A=\dfrac{1}{\sqrt{7-\sqrt{24}}+1}-\dfrac{1}{\sqrt{7+\sqrt{24}}+1}\)
\(=\dfrac{\sqrt{7-2\sqrt{6}}-1}{7-2\sqrt{6}-1}-\dfrac{\sqrt{7+2\sqrt{6}}-1}{7+2\sqrt{6}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{6}-1\right)^2}-1}{6-2\sqrt{6}}-\dfrac{\sqrt{\left(\sqrt{6}+1\right)^2}-1}{6+2\sqrt{6}}\)
\(=\dfrac{\sqrt{6}-2}{\sqrt{6}\left(\sqrt{6}-2\right)}-\dfrac{\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)
\(=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}+2}=\dfrac{\sqrt{6}+2-\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)
\(=\dfrac{2}{\sqrt{12}\left(\sqrt{3}+\sqrt{2}\right)}=\dfrac{2\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{3}\left(3-2\right)}=\dfrac{3-\sqrt{6}}{3}\)
\(5-2\sqrt{6}=\left(\sqrt{2}\right)^2-2\times\sqrt{2}\times\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
\(7+2\sqrt{10}=\left(\sqrt{2}\right)^2+2\times\sqrt{2}\times\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{2}+\sqrt{5}\right)^2\)
\(8-2\sqrt{15}=\left(\sqrt{5}\right)^3-2\times\sqrt{5}\times\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(B=\dfrac{2}{\sqrt{8-2\sqrt{15}}}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}-\dfrac{3}{\sqrt{7+2\sqrt{10}}}\)
\(=\dfrac{2}{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}-\dfrac{1}{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}-\dfrac{3}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\dfrac{2\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\dfrac{1\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\dfrac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}\)
\(=\sqrt{5}+\sqrt{3}-\sqrt{3}-\sqrt{2}-\sqrt{5}+\sqrt{2}=0\)
Bài 50:
\(\dfrac{5}{\sqrt{10}}=\dfrac{5\sqrt{10}}{10}=\dfrac{\sqrt{10}}{2}\)
\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
\(\dfrac{1}{3\sqrt{20}}=\dfrac{1}{6\sqrt{5}}=\dfrac{\sqrt{5}}{30}\)
\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
1: \(=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)
2: \(=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)
3: \(=\sqrt{3}+1-\sqrt{3}=1\)