Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{119}{117}=1+\dfrac{2}{117}\)
\(\dfrac{117}{115}=1+\dfrac{2}{115}\)
mà 2/117<2/115
nên \(\dfrac{119}{117}< \dfrac{117}{115}\)
hay \(-\dfrac{119}{117}>-\dfrac{117}{115}\)
b: \(\dfrac{-22}{35}=\dfrac{-22\cdot177}{35\cdot177}=-\dfrac{3894}{6195}\)
\(\dfrac{-103}{177}=\dfrac{-103\cdot35}{177\cdot35}=\dfrac{-3605}{6195}\)
mà -3894<-3605
nên -22/35<-103/177
Ta có:
\(\dfrac{-119}{117}=-1-\dfrac{2}{117}\)
\(\dfrac{-117}{115}=-1-\dfrac{2}{115}\)
Vì \(\dfrac{2}{117}\) < \(\dfrac{2}{115}\) nên \(\dfrac{-119}{117}\) > \(\dfrac{-117}{115}\)
Vậy, \(\dfrac{-119}{117}\) > \(\dfrac{-117}{115}\)
Câu 7:
x=2014 nên x-1=2013
\(A=x^{2014}-x^{2013}\left(x-1\right)-x^{2012}\left(x-1\right)-...-x\left(x-1\right)+1\)
\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}+x^{2012}-...-x^2+x+1\)
=x+1
=2014+1=2015
Đặt \(x=\frac{1}{117}\) và \(y=\frac{1}{119}\) ta có :
\(A=xy-4x\left(5+1-y\right)-\left(5+5xy\right)+\frac{8}{39}\)
\(A=xy-20x-4x+4xy-5-5xy+\frac{8}{39}\)
\(A=\left(xy+4xy-5xy\right)-\left(20x+4x\right)-\left(5-\frac{8}{39}\right)\)
Thay \(x=\frac{1}{117}\) ta được :
\(A=-24x-\frac{187}{39}\)
\(A=\frac{-24}{117}-\frac{561}{117}\)
\(A=\frac{-585}{117}\)
\(A=-5\)
Vậy \(A=-5\)
Chúc bạn học tốt ~
2.
\(A=\dfrac{36}{1\cdot3\cdot5}+\dfrac{36}{3\cdot5\cdot7}+...+\dfrac{36}{25\cdot27\cdot29}\\ =9\cdot\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\\ =9\cdot\dfrac{1}{3}-9\cdot\dfrac{1}{783}\\ =3-\dfrac{1}{87}< 3\)
Vậy \(A< 3\)
b,
\(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{50}\\ B< 2-\dfrac{1}{50}< 2\)
Vậy \(B< 2\)
\(P=\dfrac{2}{60\cdot63}+\dfrac{2}{63\cdot66}+...+\dfrac{2}{117\cdot120}+\dfrac{2}{2011}\\ =\dfrac{2}{3}\cdot\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)\)
\(Q=\dfrac{5}{40\cdot44}+\dfrac{5}{44\cdot48}+...+\dfrac{5}{76\cdot80}+\dfrac{5}{2011}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\)
\(\dfrac{3}{2011}< \dfrac{4}{2011}\Rightarrow\dfrac{1}{2}+\dfrac{3}{2011}< \dfrac{1}{2}+\dfrac{4}{2011}\left(1\right)\)
\(\dfrac{2}{3}< \dfrac{5}{4}\left(2\right)\)
Từ (1) và (2) ta có: \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)< \dfrac{5}{4}\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\Leftrightarrow P< Q\)
Vậy P < Q
Đặt 117=a; 119=b
Theo đề, ta có:
\(B=\left(3+\dfrac{1}{a}\right)\cdot\dfrac{1}{b}-\dfrac{4}{a}\cdot\left(5+\dfrac{b-1}{b}\right)-\dfrac{5}{a\cdot b}+8:\dfrac{a}{3}\)
\(=\dfrac{3a+1}{a}\cdot\dfrac{1}{b}-\dfrac{4}{a}\cdot\dfrac{5b+b-1}{b}-\dfrac{5}{ab}+\dfrac{24}{a}\)
\(=\dfrac{3a+1-24b+4-5}{ab}+\dfrac{24}{a}=\dfrac{3a-24b+24b}{ab}=\dfrac{3a}{ab}=\dfrac{3}{b}=\dfrac{3}{119}\)