Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=99
=>x+1=100
thay x+1=100 và 99=x vào B ta được:
x99-(x+1).x98+(x+1).x97-(x+1).x96+...+(x+1).x-1
=x99-x99-x98+x98+x97-x97-x96+...+x2+x-1
=x-1
=99-1
=98
Vậy B=98
a: \(=\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)
=0
b: \(=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+...+\left(1-1\right)\)
=0
c: \(=1^{100}-1^{99}+1^{98}-1^{97}+...+1^2-1\)
=0
f: \(=3\cdot\sqrt{9-5}+7=3\cdot2+7=13\)
THAY X= -1; Y= 1 VÀO BIỂU THỨC
CÓ: \(\left(-1\right)^{100}.1^{100}+\left(-1\right)^{99}.1^{99}+\left(-1\right)^{98}.1^{98}+\left(-1\right)^2.1^2+\left(-1\right).1+1\)
\(=1+\left(-1\right)+1+...+1+\left(-1\right)+1\)
( gạch bỏ các cặp số 1+ (-1) )
\(=0+1\)
\(=0\)
KL: \(x^{100}y^{100}+x^{99}y^{99}+x^{98}y^{98}+...+x^2y^2+1=1\)TẠI X = -1; Y =1
CHÚC BN HỌC TỐT!!
x=99
=>x+1=100
thay x+1=100 và 99=x vào B ta được:
x99-(x+1).x98+(x+1).x97-(x+1).x96+...+(x+1).x-1
=x99-x99-x98+x98+x97-x97-x96+...+x2+x-1
=x+1
=100
Vậy B=100
SỬA
x=99
=>x+1=100
thay x+1=100 và 99=x vào B ta được:
x99-(x+1).x98+(x+1).x97-(x+1).x96+...+(x+1).x-1
=x99-x99-x98+x98+x97-x97-x96+...+x2+x-1
=x-1
=99-1
=98
Vậy B=98
\(x+\frac{1}{100}+x+\frac{2}{100}+...+x+\frac{99}{100}=100x\)
\(\Rightarrow99x+\frac{1+2+...+99}{100}=100x\)
\(\Rightarrow100x-99x=\frac{\frac{\left(1+99\right).99}{2}}{100}\)
\(\Rightarrow x=\frac{99}{2}\)
Vậy \(x=\frac{99}{2}\)
\(x+\frac{1}{100}+x+\frac{2}{100}+x+\frac{3}{100}+...+x+\frac{99}{100}=100x\)
\(\Leftrightarrow99x+\frac{1+2+3+...+99}{100}=100x\)
\(\Leftrightarrow x=\frac{1+2+3+...+99}{100}\)
\(\Leftrightarrow x=\frac{\frac{99\left(99+1\right)}{2}}{100}\)
\(\Leftrightarrow x=\frac{4950}{100}\)
\(\Leftrightarrow x=\frac{99}{2}\)
Ta có : \(x=99\Rightarrow x+1=100\)
\(\Leftrightarrow P\left(99\right)=x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-...+\left(x+1\right)x-1\)
\(\Leftrightarrow x^{99}+x^{98}+x^{97}+...+x^2+x-1\)
\(\Leftrightarrow x-1\) Thay x = 99 vào x - 1 ta có
\(\Leftrightarrow P\left(99\right)=99-1=98\)
A=x10-100x9+100x8-100x7+...+100x2-100x+1 tại x=99
=>A=x10-(x+1)x9+(x+1)x8-(x+1)x7+...+(x+1)x2-(x+1)x+1
A=x10-x10-x9+x9+x8-x8-x7+...+x3+x2-x2-x+1
= 1-x
=1-99
=-98