Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(a=b=0\) thỏa mãn
- Với \(a=0;b\ne0\) hàm bậc 3 ko tồn tại min max (ko thỏa mãn)
- Với \(a< 0\Rightarrow\lim\limits_{x\rightarrow\infty}f\left(x\right)=-\infty\Rightarrow\) ko tồn tại min f(x) (loại)
\(\Rightarrow a>0\)
\(f\left(0\right)=-3\Rightarrow\) để hàm thỏa mãn yêu cầu thì \(f\left(x\right)\ge-3;\forall x\ne0\)
\(\Leftrightarrow ax^4+bx^3+x^2\ge0\Leftrightarrow x^2\left(ax^2+bx+1\right)\ge0\)
\(\Leftrightarrow ax^2+bx+1\ge0\)
\(\Leftrightarrow\Delta=b^2-4a\le0\Leftrightarrow b^2\le4a\)
- Với \(a=1\Rightarrow-2\le b\le2\) có 5 cặp
- Với \(a=2\Rightarrow-2\le b\le2\) có 5 cặp
- Với \(a=3\Rightarrow-3\le b\le3\) có 7 cặp
- Với \(a=4\Rightarrow-4\le b\le4\) có 9 cặp
Vậy tổng cộng có 27 cặp a;b thỏa mãn
Đáp án D
Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu (S) và mặt phẳng (P) sao cho KM lớn nhất
Đáp án B
Áp dụng bất đẳng thức giá trị tuyệt đối và bất đẳng thức BCS, ta có kết quả sau:
2 a + b - 2 c + 7 = 2 a + 1 + b - 2 - 2 c + 11 ≤ 2 a - 1 + b - 2 - 2 c + 11 ≤ a - 1 2 + b - 2 2 + c 2 2 2 + 1 2 + - 2 2 + 11 = 20
Cách 2: phương pháp hình học.
Trong không gian Oxyz, gọi mặt cầu (S) có tâm I(1;2;0), bán kính R=3. Khi đó:
Bài toán đã cho trở thành:
Tìm M ∈ ( S ) sao cho d(M;(P)) lớn nhất
Gọi △ là đường thẳng qua I và vuông góc (P)
Phân tích: Khi quan sát 2 cách giải, đối với giáo viên ta sẽ dễ chọn Cách 1 vì ngắn gọn và tiết kiệm thời gian. Tuy nhiên học sinh không nhiều em đã từng được tiếp cận bất đẳng thức BCS. Đối với Cách 2, về mặt trình bày có thể dài hơi, nhiều tính toán hơn nhưng đó chỉ là những bước tính toán khá cơ bản, một học sinh khá nếu nhận ra ý đồ tác giả thì việc giải bài toán cũng không mất quá nhiều thời gian. Bài toán sẽ dễ hơn nếu đề bài chỉ yêu cầu tìm Min hoặc Max của biểu thức 2 a + b - 2 c + 7
3.
\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)
\(\Rightarrow y_{min}=y\left(1\right)=m-4\)
\(\Rightarrow m-4=0\Rightarrow m=4\)
4.
Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định
\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)
\(\Rightarrow m=\frac{41}{5}\)
Đáp án B
1.
\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến
\(m=y_{min}=y\left(0\right)=2\)
\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)
\(\Rightarrow M^2+m^2=\frac{41}{4}\)
2.
Hàm xác định trên \(\left[-2;2\right]\)
\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)
\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)
\(\Rightarrow N=-2;M=2\sqrt{2}\)
\(\Rightarrow M+2N=2\sqrt{2}-4\)
Đáp án B
Ta có
Vậy giá trị nguyên n lớn nhất thỏa mãn là n = 4
Đáp án A
Gọi M(x;y) là điểm biều diễn số phức z.
Từ giả thiết, ta có |z - 4 - 3i| = 5
=> M thuộc đường tròn (C) tâm I(4;3), bán kính R = 5
Khi đó P = MA + MB với A(-1;3), B(1;-1)
Ta có
Gọi E(0;1) là trung điểm của AB
Do đó mà suy ra
Với C là giao điểm của đường thẳng EI với đường tròn (C)
Vậy Dấu “=”xảy ra