Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M= \dfrac{3^2}{2.5} +\dfrac{3^2}{5.8} +\dfrac{3^2}{8.11}+...+\dfrac{3^2}{98.101}\)
\(M= \) \( \dfrac{9}{2.5} +\dfrac{9}{5.8} +\dfrac{9}{8.11}+...+\dfrac{9}{98.101}\)
\(M=3(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+ \dfrac{3}{98.101})\)
\(M= 3(\dfrac{1}{2} -\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11})\)
\(M= 3(\dfrac{1}{2}-\dfrac{1}{11})\)
\(M=3(\dfrac{11}{22}- \dfrac{2}{22})\)
\(M=3.\dfrac{9}{22}\)
\(M=\dfrac{27}{22}\)
C=1-2+22-23+....+2100
D=1/5-1/52+1/53+.....+1/5101
E=4/2.5+4/5.8+..........+4/302.305
C=1-2+22-23+....+2100
D=1/5-1/52+1/53+.....+1/5101
E=4/2.5+4/5.8+..........+4/302.305
\(\frac{3^2}{8\cdot11}+\frac{3^2}{11\cdot14}+\frac{3^2}{14\cdot17}+...+\frac{3^2}{197\cdot200}\)
\(=3(\frac{1}{8}-\frac{1}{11}+...+\frac{1}{197}-\frac{1}{200})\)
\(=3(\frac{1}{8}-\frac{1}{200})\)
\(=3\cdot\frac{3}{25}=\frac{9}{25}\)
=3(1\(= 3(3/8.11+3/11.14+...+3/197.200) = 3(1/8-1/11+1/11-1/14+...+1/197-1/200) =3(1/8-1/200) =3/8-3/200 đề bạn ghi có chỗ nhầm nha \)
Ta có :
\(C=\frac{3^2}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.17}+...+\frac{3^2}{197.200}\)
\(C=3\left(\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+...+\frac{3}{197.200}\right)\)
\(C=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(C=3\left(\frac{1}{8}-\frac{1}{200}\right)\)
\(C=3.\frac{3}{25}\)
\(C=\frac{9}{25}\)
Chúc bạn học tốt ~
a. \(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+......+\dfrac{3}{17.20}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+......+\dfrac{1}{17}-\dfrac{1}{20}\)
\(=\dfrac{1}{2}-\dfrac{1}{20}\)
\(=\dfrac{9}{20}\)
b. \(B=\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{4}-\dfrac{1}{10}\)
\(=\dfrac{3}{20}\)
c. \(C=\dfrac{4^2}{1.5}+\dfrac{4^2}{5.9}+......+\dfrac{4^2}{45.49}\)
\(=4\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+....+\dfrac{4}{45.49}\right)\)
\(=4\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+.....+\dfrac{1}{45}-\dfrac{1}{49}\right)\)
\(=4\left(1-\dfrac{1}{49}\right)\)
\(=4.\dfrac{48}{49}\)
\(=\dfrac{192}{49}\)
=3(\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+...+\(\frac{3}{1997.2000}\))
=3(\(\frac{1}{8}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{14}\)+...+\(\frac{1}{1997}\)-\(\frac{1}{2000}\))
=3(\(\frac{1}{8}\)-\(\frac{1}{2000}\))=3.\(\frac{249}{2000}\)=\(\frac{747}{2000}\)
\(A=3.\left(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{1997.2000}\right)\)
\(=3.\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{1997}-\frac{1}{2000}\right)\)
\(=3.\left(\frac{1}{8}-\frac{1}{2000}\right)\)
\(=3.\frac{249}{2000}\)
\(\frac{747}{2000}\)
S= 23/2.5+23/5.8+....................+23/53.56
S=8/2.5+8/5.8+8/8.11+.......+8/53.56
S=8/3.(3/2.5+3/5.8+3/8.11+...........+3/53.56)
S=8/3.(1/2-1/5+1/5-1/8+1/8-...........+1/53-1/56)
S=8/3.(1/2-1/56)
S=8/3.27/56
S=9/7
nhớ t ick cho mình nha