Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Một nữa độ dài đường chéo của hình thôi đã biết: \(\dfrac{24}{2}=12cm\)
Cạnh của hình thôi và một nữa độ dài đường chéo sẽ tạo nên một tam giác vuông tại giao điểm của 2 đường chéo:
Đặt A là một nữa độ dài đường chéo chưa biết.
Áp dụng định lý Pytago ta có:
\(20^2=A^2+12^2\)
\(\Rightarrow A^2=20^2-12^2=256\)
\(\Rightarrow A=\sqrt{256}=16\left(cm\right)\)
Vậy độ dài đường chéo chưa biết là: \(16.2=32\left(cm\right)\)
Diện tích hình thôi là:
\(\dfrac{1}{2}\left(32.24\right)=384\left(cm^2\right)\)
2) Độ dài cạnh của hình lập phương là:
\(\sqrt[3]{125}=5cm\)
Diện tích xung quanh của hình lập phương là:
\(5^2.4=100\left(cm^2\right)\)
gọi O là giao điểm hai đường chéo
ta có MNPQ là hình thoi \(\Rightarrow\) MO = OP = \(\dfrac{1}{2}\) MP = \(\dfrac{1}{2}\) .10 =5
QO = ON = \(\dfrac{1}{2}\) QN = \(\dfrac{1}{2}\) .24 =12
Xét \(\Delta OPN\) có: \(\widehat{O}\) = 900
\(\Rightarrow\) PN = \(\sqrt{ON^2+OP^2}\)
= \(\sqrt{5^2+12^2}\) = 13
Cho hình thoi ABCD có diện tích bằng 120cm2 , tổng 2 đường chéo bằng 34cm . Tính đường cao hình thoi
Đáp án: `S=120cm^2`.
Giải thích các bước giải:
Gọi cạnh của hình thoi là `a (cm) (a \in NN^(**))`
Có: `P=52cm => 4a=52=> a=13`
Độ dài đường chéo còn lại là: `2. \sqrt(13^2 - (24:2)^2 )=2.5=10 (cm)`
`=> S=1/2 . 10 . 24= 120 (cm^2)`
Vậy `S=120cm^2`.