Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{24.47-23}{24+27-23}.\frac{9-\frac{9}{7}+\frac{9}{11}+\frac{9}{1001}-\frac{9}{11}}{\frac{2}{1001}-\frac{2}{13}-\frac{2}{7}+\frac{2}{11}+2}\)
co sai de ko bn
\(A=\frac{24.47-23}{24+47-23}.\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}\)
\(A=\frac{1105}{28}.\)\(\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{9+\frac{9}{7}-\frac{9}{11}+\frac{9}{1001}-\frac{9}{13}}\)
\(A=\frac{1105}{28}.\frac{3.\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{9.\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}\)
\(A=\frac{1105}{28}.\frac{3}{9}\)
\(A=\frac{1105}{84}\)
b)\(M=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}\)
Đặt \(A=1+2+2^2+2^3+...+2^{2012}\)
Suy ra \(2.A=2+2^2+2^3+2^4+...+2^{2013}\)
Khi đó \(2.A-A=2^{2013}-1\)hay \(A=2^{2013}-1\)
Do đó : \(M=\frac{A}{2^{2014}-2}=\frac{2^{2013}-1}{2^{2014}-2}=\frac{1}{2}\)
Vậy \(M=\frac{1}{2}\)
b, B = 1 + 2 + 2^2 + 2^3 +.....+ 2^2013
2B = 2.(1 + 2 + 2^2 + 2^3 +.....+ 2^2013)
2B = 2 + 2^2 + 2^3 + 2^4 +.....+ 2^2014
2B - B = 2^2014 - 1
B = 2^2014 - 1
\(a)A=\frac{24\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}\)
\(=\frac{(23+1)\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}=\frac{47-23+24}{47-23+24}\cdot\frac{3(1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13})}{3(3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11})}\)
\(=\frac{1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13}}{3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11}}=\frac{1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11}}{3(1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11})}=\frac{1}{3}\)
\(b)\)\(\text{Đặt A = }1+2+2^2+2^3+...+2^{2012}\)
\(2A=2(1+2^2+2^3+...+2^{2012})\)
\(2A=2+2^2+2^3+...+2^{2013}\)
\(2A-A=(2+2^2+2^3+2^4+...+2^{2013})-(1+2+2^2+2^3+...+2^{2012})\)
\(\Rightarrow A=2^{2013}-1\)
\(\text{Quay lại bài toán,ta có :}\)
\(B=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}=\frac{2^{2013}-1}{2^{2014}-2}=\frac{2^{2013}-1}{2(2^{2013}-1)}=\frac{1}{2}\)
a) =\(\left[\left(12+1\right)^2+\left(12+2\right)^2\right]:\left(13^2+14^2\right)\)
=1
b)=(1.2.3....8).(9-1-8)
=(1.2.3....8).0
=0
mik chỉ giải được zậy thôi.
t mik nha.
a) \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+......+\frac{1}{2017.2022}\)
\(5A=5.\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+.....+\frac{1}{2017.2022}\right)\)
\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+......+\frac{5}{2017.2022}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+........+\frac{1}{2017}-\frac{1}{2022}\)
\(5A=1-\frac{1}{2022}\)
\(5A=\frac{2022}{2022}-\frac{1}{2022}\)
\(5A=\frac{2021}{2022}\)
\(A=\frac{2021}{2022}\div5\)
\(A=\frac{20201}{10110}\)
TL:
\(\frac{5}{6}=\frac{1}{2}+\frac{1}{3}\)
@@@@@@@@@@
HT