Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)
\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)
Bài 2:
\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)
<=> \(\frac{7}{8}-x=\frac{27}{40}\)
<=> \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)
Vậy...
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
Theo đề ra ,ta có :
- 1 / 12 < x < 1 / 8 mà x có giá trị nguyên
=> x = 0
\(\text{Công thức tổng quát: }\frac{1}{1+2+3+...+n}=\frac{2}{\left(n+1\right).n}\)
bạn thay vào òi làm tiếp ,phần tiếp theo dễ thui
\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)
\(\text{B = }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)
\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
=> A > B
Vậy A > B
a) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2-\frac{11}{5}:\frac{-11}{5}=\left(-\frac{1}{10}\right)^2+1=1\frac{1}{100}\)
b) \(\left(-\frac{5}{7}\right)^2+8.\left(0,5\right)^2+\left(-1\right)^{2010}=\frac{25}{49}+2+1=3\frac{25}{49}\)
c) \(\frac{9999^2}{3333^2}+\left(0,5\right)^2.\left(-2\right)^4-\left(-\frac{4}{3}\right)^2=9+1-\frac{16}{9}=8\frac{2}{9}\)
d) \(\left|-\frac{2}{5}+\frac{1}{7}\right|:\frac{-3}{35}+\frac{-3}{7}.\frac{7}{5}=\frac{9}{35}.\frac{35}{-3}-\frac{3}{5}=-3\frac{3}{5}\)
e) \(\frac{1}{2}-\left(-0,4\right)+\frac{1}{3}+\frac{1}{5}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)
\(=\frac{1}{2}+\frac{2}{5}+\frac{1}{3}+\frac{1}{5}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}=1\frac{732}{1435}\)
\(A=\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(2A=\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-..-\frac{1}{512}\)
\(2A-A=\left(\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-..-\frac{1}{512}\right)-\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\right)\)
\(A=\frac{1}{4}+\frac{1}{4}-\frac{1}{2}+\frac{1}{1024}\)
\(A=\frac{1}{1024}\)
\(B=\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)
\(=-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
\(=-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
Đặt \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}=A\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\).Thay A vào ta đc: \(B=-\left(1-\frac{1}{2^{10}}\right)\)
\(B=-\left(1-\frac{1}{1024}\right)\)
\(B=-\frac{1023}{1024}\)
a, \(-\frac{2}{5}+\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=\frac{7}{6}\)
\(\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=\frac{47}{30}\)
\(\frac{3}{2}-\frac{4}{15}x=\frac{47}{50}\)
\(\frac{4}{15}x=\frac{14}{25}\)
\(x=\frac{21}{10}\)
từ đề bài ta có \(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(A=-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(-2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(-2A+A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(-A=2-\frac{1}{1024}\)
\(A=\frac{1}{1024}-2\)
lạy mấy bạn luôn làm nhanh giúp mình đi