Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> (x+1).4 = (x - 2) . 3
=> 4x + 4 = 3x - 6
=> 4x - 3x = - 6 - 4
=> x = - 10
b) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
\(\Rightarrow\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}=\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}\)
\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}-\frac{x+1}{12}\) = 0
\(\Rightarrow\left(x+1\right).\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)\)
Vì \(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\ne0\) nên x + 1 =0
=> x = -1
c) Xem lại đề
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
a) Ta có: \(\frac{x}{12}=\frac{y}{3}.\)
=> \(\frac{x}{12}=\frac{y}{3}\) và \(x-y=36.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4.\)
\(\left\{{}\begin{matrix}\frac{x}{12}=4=>x=4.12=48\\\frac{y}{3}=4=>y=4.3=12\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(48;12\right).\)
b)
\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)
⇒ \(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)
⇒ \(\frac{5}{3}x=\frac{1}{21}\)
⇒ \(x=\frac{1}{21}:\frac{5}{3}\)
⇒ \(x=\frac{1}{35}\)
Vậy \(x=\frac{1}{35}.\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
⇒ \(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
⇒ \(x-\frac{1}{2}=\frac{1}{3}\)
⇒ \(x=\frac{1}{3}+\frac{1}{2}\)
⇒ \(x=\frac{5}{6}\)
Vậy \(x=\frac{5}{6}.\)
Có 1 câu bạn đăng mình làm ở dưới rồi mà.
Chúc bạn học tốt!
a)áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4\)
\(\)x/12=4 suy ra x=12.4=48
y/3=4 suy ra y=3.4 =12
b)\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)
\(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)
\(\frac{5}{3}x=\frac{1}{21}\)
\(x=\frac{1}{21}:\frac{5}{3}\)
\(x=\frac{1}{35}\)
\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{2}{5}\)
\(x=\frac{-3}{20}\)
\(\left|x-\frac{2}{5}\right|+\frac{3}{4}=\frac{11}{4}\)
\(\left|x-\frac{2}{5}\right|=\frac{11}{4}-\frac{3}{4}\)
\(\left|x-\frac{2}{5}\right|=2\)
suy ra x-2/5=2 hoac x-2/5=-2
\(x-\frac{2}{5}=2\)
\(x=\frac{12}{5}\)
\(x-\frac{2}{5}=-2\)
\(x=\frac{-8}{5}\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}\)
\(x=\frac{5}{6}\)
a) \(\frac{x}{y}=\frac{15}{7}\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{17}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{17}=\frac{x-2y}{15-2\cdot17}=\frac{16}{-19}\)
=> \(\begin{cases}x=-\frac{240}{19}\\y=-\frac{272}{19}\end{cases}\)
b) \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11};\frac{z}{3}=\frac{y}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
\(\Rightarrow\begin{cases}x=40\\y=55\end{cases}\)
c) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)
Có \(xyz=-528\)
\(\Leftrightarrow8k\cdot6k\cdot11k=-528\)
\(\Leftrightarrow528\cdot k^3=-528\)
\(\Leftrightarrow k^3=-1\Leftrightarrow k=-1\)
Với k=-1 thì : x=-8;y=-6;x=-11
a) Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)
=> \(\begin{cases}x=240\\y=112\end{cases}\)
b) Từ \(\frac{x}{y}=\frac{8}{11}\Rightarrow\frac{x}{8}=\frac{y}{11}\)
\(\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{z}{3}=\frac{y}{11}\)
=> \(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
=> \(\begin{cases}x=40\\y=55\\z=15\end{cases}\)
c)Từ \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) = k
=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)
=> x.y.z = -528 => 8k.6k.11k = -528 => 528k3 = -528
=> k3 = -1 => k = -1
=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)
làm tiếp cái trước(ấn nhầm)
\(x=\frac{5}{42}-\frac{15}{28}\)
\(x=\frac{5.4}{6.4.7}-\frac{15.6}{4.7.6}\)
\(x=\frac{20}{168}-\frac{90}{168}\)
\(x=\frac{-70}{168}\)
\(x=\frac{-5}{12}\)
2.
1.
\(\frac{11}{13}-\left(\frac{5}{42}-x\right)=-\left(\frac{15}{28}-\frac{11}{13}\right)\)
\(\frac{11}{13}-\frac{5}{42}+x=-\frac{15}{28}+\frac{11}{13}\)
\(\frac{11}{13}-\frac{11}{13}-\frac{5}{42}+\frac{15}{28}=-x\)