Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{x\left(x+2\right)}\)(sửa đề)
\(\Rightarrow A=\frac{1}{2}.3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)\)
\(\Rightarrow A=\frac{3}{2}\left(\frac{1}{3}-\frac{1}{x+2}\right)\)
\(\Rightarrow A=\frac{1}{2}-\frac{3}{2x+4}\)
Đây là bài toán tìm tổng dãy số có quy luật.
Để ý thấy rằng \(\frac{1}{n\left(n+2\right)}=\frac{1}{2}.\frac{2}{n\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)\)
Vậy thì \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{n\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{n+2}\right)=\frac{5}{36}\Rightarrow\frac{1}{3}-\frac{1}{n+2}=\frac{5}{18}\)
\(\Rightarrow\frac{1}{n+2}=\frac{1}{18}\Rightarrow n=16.\)
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{n\left(n+2\right)}=\frac{5}{36}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{5}{36}\)
\(\frac{1}{3}-\frac{1}{n+2}=\frac{5}{36}\)
\(\frac{12}{36}-\frac{1}{n+2}=\frac{5}{36}\)
\(\frac{1}{n+2}=\frac{7}{36}\)
\(\Rightarrow\frac{7}{7\left(n+2\right)}=\frac{7}{36}\)
\(7\left(n+2\right)=36\)
n + 2 = 36/7
n = 36/7 - 2
( Tự tính KQ nha )
\(0,5x-\frac{2}{3}x=\frac{5}{12}\)
\(\frac{1}{2}x-\frac{2}{3}x=\frac{5}{12}\)
\(x.\left(\frac{1}{2}-\frac{2}{3}\right)=\frac{5}{12}\)
\(\Rightarrow x=-\frac{5}{2}\)
\(M=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+.....+\frac{2}{97}-\frac{2}{99}\)
\(M=\frac{2}{3}-\frac{2}{99}=\frac{64}{99}\)
M = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ..... + 1/97 - 1/99
M = 1/3 - 1/99
M = 32/99
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)\(=\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{99-97}{97\cdot99}\)\(=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}+\frac{7}{5\cdot7}-\frac{5}{5\cdot7}+...+\frac{99}{97\cdot99}-\frac{97}{97\cdot99}\)\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)\(=\frac{1}{3}-\frac{1}{99}\)\(=\frac{32}{99}>\frac{8}{25}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Nhận thấy : \(\frac{32}{99}>\frac{8}{25}\left(32>8;99>25\right)\)
Bài làm:
Ta có: Đặt \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}=32\%\)
=> Biểu thức trên > 32%
=> đpcm
Dạ đề nghị bạn Vũ Ngọc Tuấn không spam linh tinh lên bài làm nữa nhé!
Bạn ơi, ps cuối ah sai rồi nhé^^...
~~